capillarisin has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for capillarisin and Disease-Models--Animal
Article | Year |
---|---|
Capillarisin exerts antiasthmatic activity in neonatal rats via modulating the matrix remodeling.
The use of phytochemical plays a major role in recent therapeutic regimens. Amongst, Capillarisin (CPS), an active chemical constituent of Artemisia capillaris was found to exert anti-inflammatory and antioxidant properties. However, the protective role of CPS has not been identified against neonatal asthma. Hence, in the present study, Wistar rats were used consisting of four groups such as control, asthma-induced, CPS-pretreated asthma animals, and CPS control. At the end of the experimental period, histology of the lungs, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), inflammatory markers such as interleukin (IL) -6, IL-5, IL-4, and IL-13 were measured. Results demonstrated a significant restoration in alveolar thickening and reduced goblet cell hyperplasia with suppressed inflammatory cells. Moreover, a significant reduction in leukocyte infiltration in BALF lessened hyper responsiveness, and serum IgE levels of CPS treated group. Furthermore, the CPS administration alleviated the expression levels of IL-6, IL-17, IL-4 and IL-13 compared to the asthma-induced group. To an extent, the study elicited the extra cellular matrix protein expression in the asthma-induced animals, and the results demonstrated a profound reduction in the fibrotic markers was evidenced in CPS treated animals. Thus, the results of the present investigation propose that capillarisin can be a new medicine target for the treatment of asthma-mediated complications. Topics: Animals; Animals, Newborn; Anti-Asthmatic Agents; Anti-Inflammatory Agents; Artemisia; Asthma; Bronchoalveolar Lavage Fluid; Chromones; Cytokines; Disease Models, Animal; Inflammation; Lung; Ovalbumin; Rats; Rats, Wistar | 2020 |
Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model.
Artemisia capillaris has widespread traditional and pharmacological applications such as analgesic, anti-inflammatory, anti-pyretic, enhance immunity and anti-tumor activity properties. To evaluate the pharmacological activities of this plant, capillarisin, one of the potent constituent of Artemisia capillaris was studied based on anti-hyperalgesic and anti-allodynic effects with detailed mechanism. It can be assumed that measurement of anti-nociceptive effects of capillarisin is one of the parameter for the evaluation of this herb. Capillarisin has extensive pharmacological properties and has been considered to have promising ant-inflammatory and anti-nociceptive activities. The aim of the current study is to investigate the effect of capillarisin and underlying molecular mechanisms of action in preventing acute and subchronic inflammatory pain.. The inflammatory pain was induced after 40 min or 1h of administration of vehicle, 70% EtOH extract of Artemisia capillaris (100mg/kg) or capillarisin (20 and 80 mg/kg) by intraplantar (i.p.l.) injections of CFA and carrageenan in ICR mice, respectively. Mechanical hyperalgesia and allodynia were evaluated in both acute and subchronic models. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1, and ERK-CREB involved in the persistent pain sensations.. In acute model, mechanical hyperalgesia and allodynia were evaluated after every 2h until 6h of CFA and after 4h of carrageenan injections. Whereas, in subchronic inflammatory pain model, mechanical hyperalgesia and paw edema were measured after 4h of CFA injection and every day after 4h of daily treatment until 5 days with interval of day four in order to assess the tolerance effect of capillarisin. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1 and ERK-CREB involved in the persistent of pain sensations. Pre-treatment of capillarisin strongly inhibited NF-κB mediated genes (iNOS, COX-2), involved in pain. The plasma leading nitrite production was significantly reduced by capillarisin. Moreover, i.p. administration of capillarisin markedly suppressed the adenosine 5׳-triphosphate (ATP) in plasma and substance P in CFA-induced paw tissue.. The present study indicates that capillarisin possessed promising anti-hyperalgesic and anti-allodynic effects through the inhibition of various inflammatory pain signaling, suggesting that capillarisin constitutes a significant component for the treatment of inflammatory pain. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Artemisia; Carrageenan; Chromones; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Hyperalgesia; Inflammation; Male; Mice; Mice, Inbred ICR; Pain; Plant Extracts; Signal Transduction | 2014 |
Active ingredients of traditional Japanese (kampo) medicine, inchinkoto, in murine concanavalin A-induced hepatitis.
The traditional Japanese (kampo) medicine inchinkoto (ICKT) is used in Eastern Asia as a choleretic and hepatoprotective agent. Previously, we reported that ICKT ameliorates murine concanavalin A (con A)-induced hepatitis via suppression of interferon (IFN)-gamma and interleukin (IL)-12 production. In the present study, we investigated the active ingredients of ICKT.. ICKT and extracts of its component herbs were fractionated, and their effects on liver injury and cytokine production in vivo (biochemical markers of liver injury and cytokine levels in serum) and in vitro (cytokine and nitrite production in the cultures of splenocytes and peritoneal macrophages).. Decoctions of component herbs, Artemisiae Capillari Spica (Artemisia capillaris Thunberg: 'Inchinko' in Japanese), Gardeniae Fructus (Gardenia jasminoides Ellis: 'Sanshishi') and Rhei Rhizoma (Rheum palmatum Linné: 'Daio') were administered orally. Inchinko and Sanshishi decreased serum transaminases and IFN-gamma concentrations. Examination of fractions of component herbs suggested that capillarisin, a component of Inchinko, has potent hepatoprotective activity in vivo. In in vitro studies, capillarisin and genipin, an intestinal metabolite of geniposide that is contained in Sanshishi, were examined. IFN-gamma production was significantly suppressed by capillarisin and genipin in con A-stimulated splenocyte culture. Genipin also suppressed IL-1beta, IL-6, and IL-12p70 synthesis. Capillarisin and genipin decreased nitrite release from IFN-gamma-stimulated macrophages.. These results suggested that both Inchinko and Sanshishi may contribute to the protective effects of ICKT against con A hepatitis. Capillarisin was found to be potently hepatoprotective, and genipin may also contribute, especially via modulation of cytokine production. Topics: Animals; Artemisia; Chemical and Drug Induced Liver Injury; Chromones; Concanavalin A; Cytokines; Disease Models, Animal; Gardenia; Hepatitis; Interferon-gamma; Iridoid Glycosides; Iridoids; Liver; Macrophages; Magnoliopsida; Male; Medicine, Kampo; Mice; Mice, Inbred BALB C; Nitrites; Phytotherapy; Plant Extracts; Rheum; Transaminases | 2010 |