cannabidiol has been researched along with Fatty-Liver* in 2 studies
1 review(s) available for cannabidiol and Fatty-Liver
Article | Year |
---|---|
Endocannabinoids in liver disease.
Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and it is present in both brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases and contributes to the underlying pathologies. In patients with cirrhosis of various etiologies, the activation of vascular and cardiac CB(1) receptors by macrophage-derived and platelet-derived endocannabinoids contributes to the vasodilated state and cardiomyopathy, which can be reversed by CB(1) blockade. In mouse models of liver fibrosis, the activation of CB(1) receptors on hepatic stellate cells is fibrogenic, and CB(1) blockade slows the progression of fibrosis. Fatty liver induced by a high-fat diet or chronic alcohol feeding depends on the activation of peripheral receptors, including hepatic CB(1) receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB(1) blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB(1) antagonists. Topics: Animals; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Endocannabinoids; Fatty Liver; Fatty Liver, Alcoholic; Hepatic Encephalopathy; Hepatitis, Autoimmune; Humans; Liver Cirrhosis; Liver Diseases; Metabolic Syndrome; Mice; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Reperfusion Injury | 2011 |
1 other study(ies) available for cannabidiol and Fatty-Liver
Article | Year |
---|---|
Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.
Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. Topics: Animals; Antioxidants; Autophagy; Binge Drinking; Cannabidiol; Ethanol; Fatty Liver; Hep G2 Cells; Humans; Liver; Mice; Oxidative Stress | 2014 |