cannabidiol has been researched along with Dermatitis* in 2 studies
2 other study(ies) available for cannabidiol and Dermatitis
Article | Year |
---|---|
Epicutaneous Sensitization to the Phytocannabinoid β-Caryophyllene Induces Pruritic Inflammation.
In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (β-CP) act as contact sensitizers. The repeated topical application of mice skin with β-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for β-CP at 10 mg/mL. For CBD and β-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for β-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with β-CP in a concentration-dependent manner. Mast cell trafficking was restricted to β-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with β-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with β-CP. Treatment with β-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of β-CP can induce dermatitis-like pathological outcomes in mice. Topics: Angioedema; Animals; Cannabidiol; Cannabinoid Receptor Agonists; Cannabis; Complement C5; Complement C5a; Dermatitis; Filaggrin Proteins; Hallucinogens; Humans; Immunoglobulin E; Inflammation; Mice; Pruritus | 2023 |
Can we teach old drugs new tricks?-Repurposing of neuropharmacological drugs for inflammatory skin diseases.
Despite the "hype" for monoclonal antibodies, the so-called biologics, which added significant value to the therapeutic armamentarium of dermatologists and improved the life of many patients, but may exhibit significant adverse effects, the vast majority of dermatological patients suffering from atopic dermatitis or psoriasis is still treated topically. Thus, there is a huge need for locally applied, locally acting drugs for inflammatory skin diseases with better risk-benefit profiles compared to topical corticosteroids or calcineurin inhibitors. Drug repositioning is a complex process, but offers advantages, in particular for indications with lower revenues. In this viewpoint, the neuroendocrine system of the skin is described as an attractive drug target because it contributes significantly to neutralizing external noxious agents prior to inducing immune or vascular changes leading to the clinical signs of skin inflammation, for example, itch and erythema. In addition, epidermis and dermis are accessible for topically applied products which may act locally without pharmacodynamically relevant systemic exposure limiting adverse events. Moreover, since numerous drugs have been evaluated for various CNS diseases, some failed and some approved, this resource should be exploited for repurposing as anti-inflammatory drugs for topical application, for example, cannabidiol, fingolimod or asimadoline. Finally, a screening algorithm is shared which gives direct evidence of links between drug and inflammatory skin diseases. Topics: Acetamides; Administration, Cutaneous; Algorithms; Anti-Inflammatory Agents; Cannabidiol; Dermatitis; Dermatologic Agents; Drug Evaluation, Preclinical; Drug Repositioning; Fingolimod Hydrochloride; Humans; Keratinocytes; Minoxidil; Neurosecretory Systems; Pyrrolidines; Sebaceous Glands; Skin | 2019 |