cannabidiol and Colitis

cannabidiol has been researched along with Colitis* in 9 studies

Other Studies

9 other study(ies) available for cannabidiol and Colitis

ArticleYear
Efficacy of combined therapy with fish oil and phytocannabinoids in murine intestinal inflammation.
    Phytotherapy research : PTR, 2021, Volume: 35, Issue:1

    Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1β, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Cannabidiol; Cannabinoids; Colitis; Fish Oils; Inflammation; Inflammatory Bowel Diseases; Male; Mice; Mice, Inbred ICR

2021
Cannabinoid Receptor Activation on Haematopoietic Cells and Enterocytes Protects against Colitis.
    Journal of Crohn's & colitis, 2021, Jun-22, Volume: 15, Issue:6

    Cannabinoid receptor [CB] activation can attenuate inflammatory bowel disease [IBD] in experimental models and human cohorts. However, the roles of the microbiome, metabolome, and the respective contributions of haematopoietic and non-haematopoietic cells in the anti-colitic effects of cannabinoids have yet to be determined.. Female C57BL/6 mice were treated with either cannabidiol [CBD], Δ 9-tetrahydrocannabinol [THC], a combination of CBD and THC, or vehicle, in several models of chemically induced colitis. Clinical parameters of colitis were assessed by colonoscopy, histology, flow cytometry, and detection of serum biomarkers; single-cell RNA sequencing and qRT-PCR were used to evaluate the effects of cannabinoids on enterocytes. Immune cell transfer from CB2 knockout mice was used to evaluate the contribution of haematopoietic and non-haematopoietic cells to colitis protection.. We found that THC prevented colitis and that CBD, at the dose tested, provided little benefit to the amelioration of colitis, nor when added synergistically with THC. THC increased colonic barrier integrity by stimulating mucus and tight junction and antimicrobial peptide production, and these effects were specific to the large intestine. THC increased colonic Gram-negative bacteria, but the anti-colitic effects of THC were independent of the microbiome. THC acted both on immune cells via CB2 and on enterocytes, to attenuate colitis.. Our findings demonstrate how cannabinoid receptor activation on both immune cells and colonocytes is critical to prevent colonic inflammation. These studies also suggest how cannabinoid receptor activation can be used as a preventive and therapeutic modality against colitis.

    Topics: Animals; Cannabidiol; Cannabinoid Receptor Agonists; Colitis; Colonoscopy; Dronabinol; Drug Monitoring; Enterocytes; Gastrointestinal Microbiome; Immunity, Cellular; Mice; Mice, Inbred C57BL; Mice, Knockout; Protective Agents; Receptor, Cannabinoid, CB2

2021
Effects of O-1602 and CBD on TNBS-induced colonic disturbances.
    Neurogastroenterology and motility, 2020, Volume: 32, Issue:3

    This study attempted to provide the effects and mechanisms of two cannabinoids, O-1602 and cannabidiol (CBD), on colonic motility of 2,4,6-trinitro-benzene sulfonic acid (TNBS) colitis.. TNBS was used to induce the model of motility disorder. G protein-coupled receptor 55 (GPR55) expression was detected using real-time PCR and immunohistochemistry in colon. Pro-inflammatory cytokines and myeloperoxidase were also measured. The colonic motility was measured by upper GI transit in vivo and recorded using electrical stimulation organ bath technique in vitro. Freshly isolated smooth muscle from the rat colon were applied to determine the membrane potential and Ca. CBD or O-1602 separately improved inflammatory conditions significantly in TNBS-induced colitis rats. However, sole CBD pretreatment reduced GPR55 expression, which was up-regulated in TNBS colitis. O-1602 and CBD each lowered MPO and IL-6 levels remarkably in TNBS colitis, while TNF-α levels experienced no change. CBD rescued the downward colonic motility in TNBS colitis in vivo; however, it decreased the upward contraction of the smooth muscle strip under electrical stimulation in vitro. Pretreatment with CBD prevented against TNBS-induced changes of Ca. The present study suggested that CBD participated in the regulation of colonic motility in rats, and the mechanisms may be involved in the regulation of inlammatory factors and Ca

    Topics: Animals; Cannabidiol; Colitis; Gastrointestinal Transit; Inflammation; Muscle, Smooth; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Trinitrobenzenesulfonic Acid

2020
Development of a Rapid LC-MS/MS Method for the Quantification of Cannabidiol, Cannabidivarin, Δ
    Analytical chemistry, 2017, 04-18, Volume: 89, Issue:8

    Topics: Animals; Cannabidiol; Cannabinoids; Chromatography, High Pressure Liquid; Colitis; Colon; Dronabinol; Limit of Detection; Male; Mice; Mice, Inbred ICR; Pancreas; Tandem Mass Spectrometry

2017
O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms.
    Journal of molecular medicine (Berlin, Germany), 2013, Volume: 91, Issue:4

    Cannabinoids have antiinflammatory and antitumorigenic properties. Some cannabinoids, such as O-1602, have no or only little affinity to classical cannabinoid receptors but exert cannabinoid-like antiinflammatory effects during experimental colitis. Here, we investigated whether O-1602 shows antitumorigenic effects in colon cancer cells and whether it could reduce tumorigenesis in the colon in vivo. The colon cancer cell lines HT-29 and SW480 were used to study the effect of O-1602 on viability and apoptosis. The effect of O-1602 on tumor growth in vivo was studied in a colitis-associated colon cancer mouse model. O-1602 decreased viability and induced apoptosis in colon cancer cells in a concentration-dependent manner (0.1-10 μM). In the mouse model, treatment with O-1602 (3 mg/kg, i.p., 12×) reduced tumor area by 50 % and tumor incidence by 30 %. Histological scoring revealed a significant decrease in tumor load. In tumor tissue, O-1602 decreased levels of proliferating cell nuclear antigen (PCNA), activation of oncogenic transcription factors STAT3 and NFκB p65, and expression of TNF-α while levels for proapoptotic markers, such as p53 and BAX, increased. The in vivo effects of O-1602 on PCNA, BAX, and p53 were also observed in colon cancer cells. The data provide a novel insight into antitumorigenic mechanisms of atypical cannabinoids. O-1602 exerts antitumorigenic effects by targeting colon cancer cells as well as proinflammatory pathways known to promote colitis-associated tumorigenesis. Due to its lack of central sedation, O-1602 could be an interesting compound for the treatment of colon and possibly other cancers.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Cannabidiol; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colitis; Colonic Neoplasms; Cyclohexanes; Disease Models, Animal; HT29 Cells; Humans; Male; Mice; Resorcinols; STAT3 Transcription Factor; Transcription Factor RelA; Tumor Burden; Tumor Necrosis Factor-alpha

2013
Topical and systemic cannabidiol improves trinitrobenzene sulfonic acid colitis in mice.
    Pharmacology, 2012, Volume: 89, Issue:3-4

    Compounds of Cannabis sativa are known to exert anti-inflammatory properties, some of them without inducing psychotropic side effects. Cannabidiol (CBD) is such a side effect-free phytocannabinoid that improves chemically induced colitis in rodents when given intraperitoneally. Here, we tested the possibility whether rectal and oral application of CBD would also ameliorate colonic inflammation, as these routes of application may represent a more appropriate way for delivering drugs in human colitis.. Colitis was induced in CD1 mice by trinitrobenzene sulfonic acid. Individual groups were either treated with CBD intraperitoneally (10 mg/kg), orally (20 mg/kg) or intrarectally (20 mg/kg). Colitis was evaluated by macroscopic scoring, histopathology and the myeloperoxidase (MPO) assay.. Intraperitoneal treatment of mice with CBD led to improvement of colonic inflammation. Intrarectal treatment with CBD also led to a significant improvement of disease parameters and to a decrease in MPO activity while oral treatment, using the same dose as per rectum, had no ameliorating effect on colitis.. The data of this study indicate that in addition to intraperitoneal application, intrarectal delivery of cannabinoids may represent a useful therapeutic administration route for the treatment of colonic inflammation.

    Topics: Administration, Oral; Administration, Rectal; Administration, Topical; Animals; Anti-Inflammatory Agents; Cannabidiol; Colitis; Disease Models, Animal; Injections, Intraperitoneal; Male; Mice; Peroxidase; Trinitrobenzenesulfonic Acid

2012
The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment.
    Inflammatory bowel diseases, 2011, Volume: 17, Issue:8

    Cannabinoids are known to reduce intestinal inflammation. Atypical cannabinoids produce pharmacological effects via unidentified targets. We were interested in whether the atypical cannabinoid O-1602, reportedly an agonist of the putative cannabinoid receptor GPR55, reduces disease severity of dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6N and CD1 mice.. DSS (2.5% and 4%) was supplied in drinking water for 1 week while TNBS (4 mg) was applied as a single intrarectal bolus.. Both treatments caused severe colitis. Injection of O-1602 (5 mg/kg intraperitoneally) significantly reduced macroscopic and histological colitis scores, and myeloperoxidase activity. The protective effect was still present in cannabinoid receptor 1 (CB₁) and 2 (CB₂) double knockout mice and mice lacking the GPR55 gene. To investigate a potential mechanism underlying the protection by O-1602 we performed neutrophil chemotactic assays. O-1602 concentration-dependently inhibited migration of murine neutrophils to keratinocyte-derived chemokine (KC), N-formyl-methionyl-leucyl-phenylalanine (fMLP), and the N-formyl-peptide receptor ligand WKYMVm. The inhibitory effect of O-1602 was preserved in neutrophils from CB₁/CB₂ double knockout and GPR55 knockout mice. No differences were seen in locomotor activity between O-1602-treated and control mice, indicating lack of central sedation by this compound.. Our data demonstrate that O-1602 is protective against experimentally induced colitis and inhibits neutrophil recruitment independently of CB₁, CB₂, and GPR55 receptors. Thus, atypical cannabinoids represent a novel class of therapeutics that may be useful for the treatment of inflammatory bowel diseases.

    Topics: Analysis of Variance; Animals; Cannabidiol; Cannabinoids; Chemotaxis, Leukocyte; Colitis; Colon; Cyclohexanes; Dextran Sulfate; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Neutrophil Infiltration; Neutrophils; Peroxidase; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Resorcinols; Trinitrobenzenesulfonic Acid

2011
The effects of Delta-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis.
    British journal of pharmacology, 2010, Volume: 160, Issue:3

    Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis.. The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug.. Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not.. In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.

    Topics: Animals; Cannabidiol; Colitis; Colon; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Drug Therapy, Combination; Gastrointestinal Motility; In Vitro Techniques; Inflammation; Male; Peroxidase; Rats; Rats, Wistar; Sulfasalazine; Trinitrobenzenesulfonic Acid

2010
Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis.
    Journal of molecular medicine (Berlin, Germany), 2009, Volume: 87, Issue:11

    Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice.

    Topics: Amidohydrolases; Animals; Antioxidants; Caco-2 Cells; Cannabidiol; Cannabinoid Receptor Modulators; Cannabis; Cell Survival; Colitis; Colon; Cyclooxygenase 2; Gene Expression; Humans; Interleukin-10; Interleukin-1beta; Male; Mice; Mice, Inbred ICR; Nitric Oxide Synthase Type II; Organ Size

2009