cannabidiol has been researched along with Atherosclerosis* in 4 studies
2 review(s) available for cannabidiol and Atherosclerosis
Article | Year |
---|---|
[The potential use of cannabidiol in the therapy of metabolic syndrome].
Cannabidiol, a cannabinoid and serotonin receptor antagonist, may alleviate hyperphagia without the side effects of rimonabant (for example depression and reduced insulin sensitivity). Similar to the peroxisome proliferator-activated receptor-gamma agonists, it may also help the differentation of adipocytes. Cannabidiol has an immunomodulating effect, as well, that helps lessen the progression of atherosclerosis induced by high glucose level. It may also be effective in fighting ischaemic diseases, the most harmful complications of metabolic syndrome. However, it can only be administered as an adjuvant therapy because of its low binding potency, and its inhibiting effect of cytochrome P450 enzymes should also be considered. Nevertheless, it may be beneficially used in adjuvant therapy because of its few side effects. Topics: Adipocytes; Appetite Depressants; Atherosclerosis; Cannabidiol; Cannabinoid Receptor Antagonists; Disease Progression; Humans; Hyperphagia; Ischemia; Metabolic Syndrome; Obesity; Piperidines; PPAR gamma; Pyrazoles; Rimonabant | 2012 |
Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress.
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB₁ and CB₂ G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain. Topics: Animals; Anti-Inflammatory Agents; Arthritis, Rheumatoid; Atherosclerosis; Cannabidiol; Cannabinoid Receptor Modulators; Diabetes Mellitus; Humans; Immunity; Inflammation; Molecular Targeted Therapy; Neuralgia; Oxidative Stress; Reperfusion Injury | 2011 |
2 other study(ies) available for cannabidiol and Atherosclerosis
Article | Year |
---|---|
Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.
The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9)-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases. Topics: Atherosclerosis; Cannabidiol; Cell Line; Cholesterol; Cyclohexanes; Cytokines; Foam Cells; Gene Expression; Humans; Lipid Droplets; Lipid Metabolism; Lipopolysaccharides; Lipoproteins, LDL; Matrix Metalloproteinase 9; NFATC Transcription Factors; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Resorcinols | 2015 |
Cannabidiol-2',6'-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro.
15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis. Both enzymatic (15-LOX) and non-enzymatic (Cu(2+)) mechanisms have been proposed for the production of ox-LDL. We have recently reported that cannabidiol-2',6'-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation (Takeda et al., Drug Metab. Dispos., 37, 1733-1737 (2009)). In the LDL, linoleic acid is present as cholesteryl linoleate, the major fatty acid esterified to cholesterol, and is susceptible to oxidative modification by 15-LOX or Cu(2+). In this investigation, we examined the efficacy of CBDD on i) 15-LOX-catalyzed oxygenation of cholesteryl linoleate, and ii) ox-LDL formation catalyzed by 15-LOX versus Cu(2+)-mediated non-enzymatic generation of this important mediator. The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway. These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis. Topics: Antioxidants; Arachidonate 15-Lipoxygenase; Atherosclerosis; Cannabidiol; Cholesterol Esters; Cholesterol, LDL; Copper; Humans; Lipoproteins, LDL; Oxidation-Reduction | 2011 |