cangrelor and Acute-Lung-Injury

cangrelor has been researched along with Acute-Lung-Injury* in 2 studies

Reviews

1 review(s) available for cangrelor and Acute-Lung-Injury

ArticleYear
Dyspnea and reversibility of antiplatelet agents: ticagrelor, elinogrel, cangrelor, and beyond.
    Cardiology, 2014, Volume: 127, Issue:1

    Oral reversible platelet P2Y12 receptor inhibitors (ticagrelor and elinogrel) cause double-digit rates of dyspnea, while irreversible oral antiplatelet drugs (aspirin, ticlopidoine, clopidogrel, and prasugrel) or intravenous glycoprotein IIb/IIIa inhibitors (abciximab, eptifibatide, or tirofiban) do not increase the incidence of dyspnea in randomized trials. Dyspnea after oral reversible antiplatelet agents remains unexplained. A transfusion-related acute lung injury (TRALI) hypothesis has been proposed. The dyspnea risks after cangrelor, an intravenous reversible antiplatelet agent, are not well defined but may offer a universal mechanism linking TRALI, dyspnea, and reversible platelet inhibition.. We analyzed safety data from recent head-to-head randomized trials with reversible antiplatelet agents (ticagrelor, elinogrel, and cangrelor) compared to irreversible (clopidogrel/placebo) comparators.. All three reversible antiplatelet agents cause excess dyspnea. In contrast to the high double-digit rates after oral ticagrelor or elinogrel, the dyspnea risks after intravenous cangrelor were smaller (<2%) but still consistently and significantly higher than in the corresponding control arms.. The clinical utility of reversible antiplatelet strategies has been challenged. Despite a potential advantage of fewer bleeding events during heart surgery, reversible antiplatelet agents carry the risk of potential autoimmune reactions manifesting as dyspnea. Repeated binding and unbinding cycles, impaired platelet turnover, and lung sequestration or apoptosis of overloaded destructive platelets are among the potential mechanism(s) responsible for dyspnea after reversible antiplatelet agents.

    Topics: Acute Lung Injury; Adenosine; Adenosine Monophosphate; Administration, Oral; Clopidogrel; Dyspnea; Humans; Platelet Aggregation Inhibitors; Purinergic P2Y Receptor Antagonists; Quinazolinones; Randomized Controlled Trials as Topic; Sulfonamides; Ticagrelor; Ticlopidine; Transfusion Reaction

2014

Other Studies

1 other study(ies) available for cangrelor and Acute-Lung-Injury

ArticleYear
Cangrelor ameliorates CLP-induced pulmonary injury in sepsis by inhibiting GPR17.
    European journal of medical research, 2021, Jul-06, Volume: 26, Issue:1

    Sepsis is a common complication of severe wound injury and infection, with a very high mortality rate. The P2Y12 receptor inhibitor, cangrelor, is an antagonist anti-platelet drug.. In our study, we investigated the protective mechanisms of cangrelor in CLP-induced pulmonary injury in sepsis, using C57BL/6 mouse models.. TdT-mediated dUTP Nick-End Labeling (TUNEL) and Masson staining showed that apoptosis and fibrosis in lungs were alleviated by cangrelor treatment. Cangrelor significantly promoted surface expression of CD40L on platelets and inhibited CLP-induced neutrophils in Bronchoalveolar lavage fluid (BALF) (p < 0.001). We also found that cangrelor decreased the inflammatory response in the CLP mouse model and inhibited the expression of inflammatory cytokines, IL-1β (p  < 0.01), IL-6 (p < 0.05), and TNF-α (p < 0.001). Western blotting and RT-PCR showed that cangrelor inhibited the increased levels of G-protein-coupled receptor 17 (GPR17) induced by CLP (p < 0.001).. Our study indicated that cangrelor repressed the levels of GPR17, followed by a decrease in the inflammatory response and a rise of neutrophils in BALF, potentially reversing CLP-mediated pulmonary injury during sepsis.

    Topics: Acute Lung Injury; Adenosine Monophosphate; Animals; Cecum; Disease Models, Animal; Ligation; Mice; Mice, Inbred C57BL; Punctures; Purinergic P2Y Receptor Antagonists; Sepsis

2021