calpastatin has been researched along with Sepsis* in 4 studies
4 other study(ies) available for calpastatin and Sepsis
Article | Year |
---|---|
Cleavage of IκBα by calpain induces myocardial NF-κB activation, TNF-α expression, and cardiac dysfunction in septic mice.
Recent studies in septic models have shown that myocardial calpain activity and TNF-α expression increase during sepsis and that inhibition of calpain activation downregulates myocardial TNF-α expression and improves cardiac dysfunction. However, the mechanism underlying this pathological process is unclear. Thus, in the present study, we aimed to explore whether IκBα/NF-κB signaling linked myocardial calpain activity and TNF-α expression in septic mice. Adult male mice were injected with LPS (4 mg/kg ip) to induce sepsis. Myocardial calpain activity, IκBα/NF-κB signaling activity, and TNF-α expression were assessed, and myocardial function was evaluated using the Langendorff system. In septic mice, myocardial calpain activity and TNF-α expression were increased and IκBα protein was degraded. Furthermore, NF-κB was activated, as indicated by increased NF-κB p65 phosphorylation, cleavage of p105 into p50, and its nuclear translocation. Administration of the calpain inhibitors calpain inhibitor Ш and PD-150606 prevented the LPS-induced degradation of myocardial IκBα, NF-κB activation, and TNF-α expression and ultimately improved myocardial function. In calpastatin transgenic mice, an endogenous calpain inhibitor and cultured neonatal mouse cardiomyocytes overexpressing calpastatin also inhibited calpain activity, IκBα protein degradation, and NF-κB activation after LPS treatment. In conclusion, myocardial calpain activity was increased in septic mice. Calpain induced myocardial NF-κB activation, TNF-α expression, and myocardial dysfunction in septic mice through IκBα protein cleavage. Topics: Acrylates; Animals; Calcium-Binding Proteins; Calpain; Dipeptides; Disease Models, Animal; Heart; Heart Diseases; I-kappa B Proteins; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Myocardium; NF-kappa B; NF-KappaB Inhibitor alpha; Sepsis; Signal Transduction; Tumor Necrosis Factor-alpha | 2014 |
Muscle-specific calpastatin overexpression prevents diaphragm weakness in cecal ligation puncture-induced sepsis.
Recent work indicates that infections are a major contributor to diaphragm weakness in patients who are critically ill and mechanically ventilated, and that diaphragm weakness is a risk factor for death and prolonged mechanical ventilation. Infections activate muscle calpain, but many believe this is an epiphenomenon and that other proteolytic processes are responsible for infection-induced muscle weakness. We tested the hypothesis that muscle-specific overexpression of calpastatin (CalpOX; an endogenous calpain inhibitor) would attenuate diaphragm dysfunction in cecal ligation puncture (CLP)-induced sepsis. We studied 1) wild-type (WT) sham-operated mice, 2) WT CLP-operated mice, 3) CalpOX sham-operated mice, and 4) CalpOX CLP-operated mice (n = 9-10/group). Twenty-four hours after surgery, we assessed the diaphragm force-frequency relationship, diaphragm mass, and total protein content and diaphragm levels of talin and myosin heavy chain (MHC). CLP markedly reduced diaphragm-specific force generation (force/cross-sectional area), which was prevented by calpastatin overexpression (force averaged 21.4 ± 0.5, 6.9 ± 0.8, 22.4 ± 1.0, and 18.3 ± 1.3 N/cm(2), respectively, for WT sham, WT CLP, CalpOX sham, and CalpOX CLP groups, P < 0.001). Diaphragm mass and total protein content were similar in all groups. CLP induced talin cleavage and reduced MHC levels; CalpOX prevented these alterations. CLP-induced sepsis rapidly reduces diaphragm-specific force generation and is associated with cleavage and/or depletion of key muscle proteins (talin, MHC), effects prevented by muscle-specific calpastatin overexpression. These data indicate that calpain activation is a major cause of diaphragm weakness in response to CLP-induced sepsis. Topics: Animals; Calcium-Binding Proteins; Calpain; Cecum; Diaphragm; Ligation; Mice; Muscle Proteins; Muscle Weakness; Muscles; Myosin Heavy Chains; Sepsis; Talin | 2014 |
Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release.
Sepsis, a leading cause of death worldwide, involves widespread activation of inflammation, massive activation of coagulation, and lymphocyte apoptosis. Calpains, calcium-activated cysteine proteases, have been shown to increase inflammatory reactions and lymphocyte apoptosis. Moreover, calpain plays an essential role in microparticle release.. We investigated the contribution of calpain in eliciting tissue damage during sepsis.. To test our hypothesis, we induced polymicrobial sepsis by cecal ligation and puncture in wild-type (WT) mice and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor.. In WT mice, calpain activity increased transiently peaking at 6 hours after cecal ligation and puncture surgery. Calpastatin overexpression improved survival, organ dysfunction (including lung, kidney, and liver damage), and lymphocyte apoptosis. It decreased the sepsis-induced systemic proinflammatory response and disseminated intravascular coagulation, by reducing the number of procoagulant circulating microparticles and therefore delaying thrombin generation. The deleterious effect of microparticles in this model was confirmed by transferring microparticles from septic WT to septic transgenic mice, worsening their survival and coagulopathy.. These results demonstrate an important role of the calpain/calpastatin system in coagulation/inflammation pathways during sepsis, because calpain inhibition is associated with less severe disseminated intravascular coagulation and better overall outcomes in sepsis. Topics: Animals; Apoptosis; Calcium-Binding Proteins; Calpain; Cell-Derived Microparticles; Cytokines; Disease Models, Animal; Disseminated Intravascular Coagulation; Lymphocytes; Mice; Mice, Inbred C57BL; Mice, Transgenic; Multiple Organ Failure; NF-kappa B; Sepsis; Thromboplastin | 2012 |
Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression.
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Line; Cysteine Proteinase Inhibitors; Dexamethasone; Dipeptides; Gene Expression; Glycoproteins; Hydrogen Peroxide; Male; Muscle Proteins; Muscle, Skeletal; Muscular Atrophy; Myoblasts, Skeletal; Pepstatins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Rats, Sprague-Dawley; Sepsis; SKP Cullin F-Box Protein Ligases; Transfection; Tripartite Motif Proteins; Ubiquitin-Protein Ligases | 2006 |