calpastatin has been researched along with Myocardial-Infarction* in 9 studies
9 other study(ies) available for calpastatin and Myocardial-Infarction
Article | Year |
---|---|
MCU Up-regulation contributes to myocardial ischemia-reperfusion Injury through calpain/OPA-1-mediated mitochondrial fusion/mitophagy Inhibition.
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above-mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up-regulation of MCU promoted the expression and activation of calpain-1/2 and down-regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock-down cultured cell. In I/R models of transgenic mice over-expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up-regulation induces calpain activation, which down-regulates OPA1, consequently leading to mitochondrial dynamic imbalance. Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Apoptosis; Calcium Channels; Calcium-Binding Proteins; Calpain; Enzyme Inhibitors; GTP Phosphohydrolases; Homeostasis; Male; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria, Heart; Mitochondrial Dynamics; Mitophagy; Myocardial Infarction; Myocardial Reperfusion Injury; Protective Agents; Rats; Up-Regulation | 2019 |
Delayed, oral pharmacological inhibition of calpains attenuates adverse post-infarction remodelling.
Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure.. To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion.. Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-β1-induced fibroblast activation.. Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction. Topics: Animals; Calcium-Binding Proteins; Calpain; Carbamates; Glycoproteins; Heart; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Rats, Sprague-Dawley | 2017 |
Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation.
The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment. Topics: Animals; Calcium-Binding Proteins; Calpain; CD4-Positive T-Lymphocytes; Chemotaxis, Leukocyte; Disease Models, Animal; Enzyme Activation; Genotype; Heart Rupture, Post-Infarction; Homeodomain Proteins; Lymphocyte Activation; Macrophage Activation; Macrophages; Male; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Phenotype; Time Factors; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling; Wound Healing | 2015 |
Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling.
Enzymatic proteolysis by calpains, Ca(2+)-dependent intracellular cysteine proteases, has been implicated in pathological processes such as cellular degeneration or death. Here, we investigated the role of calpain activation in the hearts subjected to myocardial infarction. We produced myocardial infarction in Cast(-/-) mice deficient for calpastatin, the specific endogenous inhibitory protein for calpains, and Cast(+/+) mice. The activity of cardiac calpains in Cast(+/+) mice was not elevated within 1 day but showed a gradual elevation after 7 days following myocardial infarction, which was further pronounced in Cast(-/-) mice. Although the prevalence of cardiomyocyte death was indistinguishable between Cast(-/-) and Cast(+/+) mice, Cast(-/-) mice exhibited profound contractile dysfunction and chamber dilatation and showed a significant reduction in survival rate after myocardial infarction as compared with Cast(+/+) mice. Notably, immunofluorescence revealed that at 28 days after myocardial infarction, calpains were activated in cardiomyocytes exclusively at the border zone and that Cast(-/-) mice showed higher intensity and a broader extent of calpain activation at the border zone than Cast(+/+) mice. In the border zone of Cast(-/-) mice, pronounced activation of calpains was associated with a decrease in N-cadherin expression and up-regulation of molecular markers for cardiac hypertrophy and fibrosis. In cultured rat neonatal cardiomyocytes, calpain activation by treatment with ionomycin induced cleavage of N-cadherin and decreased expression levels of β-catenin and connexin 43, which was attenuated by calpain inhibitor. These results thus demonstrate that activation of calpains disassembles cell-cell adhesion at intercalated discs by degrading N-cadherin and thereby promotes left ventricular remodeling after myocardial infarction. Topics: Animals; beta Catenin; Cadherins; Calcium-Binding Proteins; Calpain; Connexin 43; Enzyme Activation; Mice; Mice, Knockout; Muscle Proteins; Myocardial Infarction; Myocytes, Cardiac; Nerve Tissue Proteins; Rats; Rats, Wistar; Ventricular Remodeling | 2014 |
Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion.
Calpains contribute to reperfusion-induced myocardial cell death. However, it remains controversial whether its activation occurs during ischemia or reperfusion. We investigated the regulation and time-course of calpain activation secondary to transient ischemia and the efficacy of its inhibition at reperfusion as a therapeutic strategy to limit infarct size. In isolated rat hearts (Sprague-Dawley), ischemia induced a time-dependent translocation of m-calpain to the membrane that was not associated with calpain activation as assessed by proteolysis of its substrate alpha-fodrin. Translocation of calpain was dependent on Ca(2+) entry through reverse mode Na(+)/Ca(2+)-exchange and was independent of acidosis. Calpain activation occurred during reperfusion, but only after intracellular pH (pHi) normalization, and was not prevented by inhibiting its translocation during ischemia with methyl-beta-cyclodextrin. The intravenous infusion of MDL-28170 in an in vivo rat model with transient coronary occlusion during the first minutes of reperfusion resulted in a reduction of infarct size (43.9+/-3.9% vs. 60.2+/-4.7, P=0.046, n=18) and alpha-fodrin degradation. These results suggest that (1) Ca(2+)-induced calpain translocation to the membrane during ischemia is independent of its activation, (2) intracellular acidosis inhibits calpain activation during ischemia and pHi normalization allows activation upon reperfusion, and (3) calpain inhibition at the time of reperfusion appears as a potentially useful strategy to limit infarct size. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Death; Enzyme Activation; Hemodynamics; Hydrogen-Ion Concentration; In Vitro Techniques; Intracellular Space; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Protease Inhibitors; Protein Transport; Rats; Rats, Sprague-Dawley | 2010 |
Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction.
Changes in proteolytic activity of the myocardium during the development of heart failure after left coronary artery ligation (CAL) of rats were examined. Hemodynamics of the rats at the eighth week (8w-CAL rat), but not at the second week (2w-CAL rat), after CAL showed the symptoms of chronic heart failure. Contents of mu-calpin and m-calpain, but not an intrinsic calpain inhibitor calpastatin, in the viable left ventricular muscle (viable LV) and the right ventricular muscle (RV) of the 2w-CAL and 8w-CAL rats were increased, which was associated with an elevation of intrinsic activities of leupeptin-sensitive, Ca(2+)-activated proteolysis in the cytosolic fractions of the viable LV and RV. Oral administration of 3 mg/kg/d trandolapril or 1 mg/kg/d candesartan from the second to eighth week after CAL improved the hemodynamics of 8w-CAL rats. The drug treatment attenuated the increases in mu-calpain and m-calpain contents and the elevation of the proteolytic activity of the viable LV and RV in the 8w-CAL rat. The drug treatment increased calpastatin content of the RV in the 8w-CAL rat. These results suggest that sustained activation of calpain is involved in the development of chronic heart failure and that trandolapril and candesartan prevent the activation of calpains after CAL. Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Calcium-Binding Proteins; Calpain; Cytosol; Enzyme Activation; Heart Failure; Male; Myocardial Infarction; Myocardium; Organ Size; Rats; Rats, Wistar | 2006 |
Effects of angiotensin I-converting enzyme inhibitor and angiotensin II type 1 receptor blocker on the right ventricular sarcoglycans and dystrophin after left coronary artery ligation.
We examined the effects of trandolapril and candesartan on changes in the levels of sarcoglycans and dystrophin in the right ventricle of rats with the left coronary artery ligation. Hemodynamic and morphological alterations suggested the development of hypertrophy of the right ventricle and chronic heart failure by the 8th week. By the end of the 8th week, alpha- and beta-sarcoglycans and dystrophin were decreased. Increases in mu- and m-calpains in the hypertrophied right ventricle were associated with an elevation of casein-proteolytic activity in the cytosolic fraction. Oral administration of 3 mg/kg/day trandolapril or 1 mg/kg/day candesartan from the 2nd to 8th week after the left coronary artery ligation attenuated decreases in alpha-sarcoglycan and dystrophin and reduced the increased proteolytic activity. The results suggest that attenuation of decreases in sarcoglycans and dystrophin is a possible mechanism underlying trandolapril- and candesartan-mediated improvement of structural and functional alterations of the right ventricle in the coronary artery-ligated rat. Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Blotting, Western; Body Weight; Calcium-Binding Proteins; Calpain; Coronary Vessels; Cytosol; Dystrophin; Gene Expression; Heart Rate; Heart Ventricles; Indoles; Ligation; Male; Myocardial Infarction; Protein Isoforms; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sarcoglycans; Tetrazoles; Time Factors; Transcription, Genetic | 2005 |
Decrease in sarcoglycans and dystrophin in failing heart following acute myocardial infarction.
Genetic defects in several sarcoglycans (SGs) and dystrophin (Dys) play a critical role in cardiomyopathy. The present study was designed to determine whether changes in SGs and Dys might occur in animals with chronic heart failure (CHF) induced by acute myocardial infarction (AMI), which have no genetic defects.. AMI was induced by the left coronary artery ligation (CAL) in rats. The hemodynamic parameters of the 2- and 8-week CAL (2w- and 8w-CAL) rats were measured and the myocardial SGs, Dys, calpain, and calpastatin levels were determined by the Western blot method. Myocardial calpain-like protease activity was evaluated as caseinolysis activity.. Increases in left ventricular end-diastolic pressure (LVEDP) and right ventricular systolic pressure, and a decrease in +/-dP/dt were observed at the 2nd week, whereas cardiac output index (COI) was preserved. In contrast, the 8w-CAL rats showed a further increment in LVEDP with low COI. alpha-SG of the viable left ventricle (LV), and septum (Sep) of the 8w-CAL rat decreased (60-70% of the control). The alpha- and beta-SGs of the right ventricle (RV) of the 2w- and 8w-CAL rats were reduced, while gamma- and delta-SGs in the three regions did not change significantly. Dys in the viable LV and RV of the 8w-CAL rat decreased (75% of the control). The amount of m-calpain in the three regions of the 2w- and 8w-CAL rats increased (140-200% of the control), whereas the endogenous calpain inhibitor, calpastatin, did not change significantly. The in vitro degradation studies using purified m-calpain or cytosolic fractions of the 8w-CAL rat heart suggested a reduction in SGs and Dys by calpain.. The results suggest that a decrease in SGs and Dys may play an important role in the pathophysiology of CHF following AMI. Topics: Animals; Blood Pressure; Blotting, Western; Calcium-Binding Proteins; Calpain; Cardiac Output, Low; Culture Techniques; Cytoskeletal Proteins; Cytosol; Dystroglycans; Dystrophin; Heart Rate; Male; Membrane Glycoproteins; Models, Animal; Myocardial Infarction; Myocardium; Rats; Rats, Wistar; Sarcoglycans; Sarcolemma | 2003 |
Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction--effects of AT(1) and AT(2) receptor antagonists and ACE inhibitor.
1. Recent studies demonstrated that the cardiac calpain system is activated during ischaemic events and is involved in cardiomyocyte injury. The aim of this study was to investigate the contribution of AT(1) and AT(2) receptors in the regulation of calpain-mediated myocardial damage following myocardial infarction (MI). 2. Infarcted animals were treated either with placebo, the ACE inhibitor ramipril (1 mg kg(-1) d(-1)), the AT(1) receptor antagonist valsartan (10 mg kg(-1) d(-1)) or the AT(2) receptor antagonist PD 123319 (30 mg kg(-1) d(-1)). Treatment was started 7 days prior to surgery. On day 1, 3, 7 and 14 after MI, gene expression and protein levels of calpain I, II and calpastatin were determined in left ventricular free wall (LVFW) and interventricular septum (IS). At day 3 and 14 post MI, morphological investigations were performed. 3. Calpain I mRNA expression and protein levels were increased in IS 14 days post MI, whereas mRNA expression and protein levels of calpain II were maximally increased in LVFW 3 days post MI. Ramipril and valsartan decreased mRNA and protein up-regulation of calpain I and II, and reduced infarct size and interstitial fibrosis. PD 123319 did not affect calpain I or II up-regulation in the infarcted myocardium, but decreased interstitial fibrosis. Calpastatin expression and translation were not affected by AT receptor antagonists or ACE inhibitor. 4. Our data demonstrate a distinct, temporary-spatial up-regulation of calpain I and II following MI confer with the hypothesis of calpain I being involved in cardiac remodelling in the late and calpain II contributing to cardiac tissue damage in the early phase of MI. The up-regulation of calpain I and II is partly mediated via the AT(1) receptor and can be reduced by ACE inhibitors and AT(1) receptor antagonists. Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Blood Pressure; Calcium-Binding Proteins; Calpain; Disease Models, Animal; Gene Expression Regulation; Heart; Heart Rate; Imidazoles; Male; Myocardial Infarction; Protein Biosynthesis; Pyridines; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; RNA, Messenger; Tetrazoles; Transcription, Genetic; Valine; Valsartan | 2001 |