calpastatin has been researched along with Muscular-Dystrophy--Duchenne* in 2 studies
2 other study(ies) available for calpastatin and Muscular-Dystrophy--Duchenne
Article | Year |
---|---|
Leupeptin-based inhibitors do not improve the mdx phenotype.
Calpain activation has been implicated in the disease pathology of Duchenne muscular dystrophy. Inhibition of calpain has been proposed as a promising therapeutic target, which could lessen the protein degradation and prevent progressive fibrosis. At the same time, there are conflicting reports as to whether elevation of calpastatin, an endogenous calpain inhibitor, alters pathology. We compared the effects of pharmacological calpain inhibition in the mdx mouse using leupeptin and a proprietary compound (C101) that linked the inhibitory portion of leupeptin to carnitine (to increase uptake into muscle). Administration of C101 for 4 wk did not improve muscle histology, function, or serum creatine kinase levels in mdx mice. Mdx mice injected daily with leupeptin (36 mg/kg) for 6 mo also failed to show improved muscle function, histology, or creatine kinase levels. Biochemical analysis revealed that leupeptin administration caused an increase in m-calpain autolysis and proteasome activity, yet calpastatin levels were similar between treated and untreated mdx mice. These data demonstrate that pharmacological inhibition of calpain is not a promising intervention for the treatment of Duchenne muscular dystrophy due to the ability of skeletal muscle to counter calpain inhibitors by increasing multiple degradative pathways. Topics: Animals; Biomarkers; Calcium-Binding Proteins; Calpain; Creatine Kinase; Cysteine Proteinase Inhibitors; Diaphragm; Disease Models, Animal; Dose-Response Relationship, Drug; Genotype; Leupeptins; Mice; Mice, Inbred mdx; Muscle Contraction; Muscle Strength; Muscular Dystrophy, Duchenne; Necrosis; Phenotype; Proteasome Endopeptidase Complex; Time Factors | 2010 |
Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse.
Dystrophin deficiency is the underlying molecular cause of progressive muscle weakness observed in Duchenne muscular dystrophy (DMD). Loss of functional dystrophin leads to elevated levels of intracellular Ca(2+), a key step in the cellular pathology of DMD. The cysteine protease calpain is activated in dystrophin-deficient muscle, and its inhibition is regarded as a potential therapeutic approach. In addition, previous work has shown that the ubiquitin-proteasome system also contributes to muscle protein breakdown in dystrophic muscle and, therefore, also qualifies as a potential target for therapeutic intervention in DMD. The relative contribution of calpain- and proteasome-mediated proteolysis induced by increased Ca(2+) levels was characterized in cultured muscle cells and revealed initial Ca(2+) influx-dependent calpain activity and subsequent Ca(2+)-independent activity of the ubiquitin-proteasome system. We then set out to optimize novel small-molecule inhibitors that inhibit both calpain as well as the 20S proteasome in a cellular system with impaired Ca(2+) homeostasis. On administration of such inhibitors to mdx mice, quantitative histological parameters improved significantly, in particular with compounds strongly inhibiting the 20S proteasome. To investigate the role of calpain inhibition without interfering with the ubiquitin-proteasome system, we crossed mdx mice with transgenic mice, overexpressing the endogenous calpain inhibitor calpastatin. Although our data show that proteolysis by calpain is strongly inhibited in the transgenic mdx mouse, this calpain inhibition did not ameliorate muscle histology. Our results indicate that inhibition of the proteasome rather than calpain is required for histological improvement of dystrophin-deficient muscle. In conclusion, we have identified novel proteasome inhibitors that qualify as potential candidates for pharmacological intervention in muscular dystrophy. Topics: Animals; Calcium; Calcium-Binding Proteins; Calpain; Cells, Cultured; Humans; Mice; Mice, Inbred mdx; Mice, Transgenic; Muscles; Muscular Dystrophy, Duchenne; Myoblasts; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors | 2008 |