calpastatin has been researched along with Machado-Joseph-Disease* in 2 studies
2 other study(ies) available for calpastatin and Machado-Joseph-Disease
Article | Year |
---|---|
Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3 (SCA3).
Spinocerebellar ataxia type 3 (SCA3) is pathologically characterized by the formation of intranuclear aggregates which contain ataxin-3, the mutated protein in SCA3, in a specific subtype of neurons. It has been proposed that ataxin-3 is cleaved by proteolytic enzymes, in particular by calpains and caspases, eventually leading to the formation of aggregates. In our study, we examined the ability of calpains to cleave ataxin-3 in vitro and in vivo. We demonstrated in cell culture and mouse brain homogenates that cleavage of overexpressed ataxin-3 by calpains and in particular by calpain-2 occur and that polyglutamine expanded ataxin-3 is more sensitive to calpain degradation. Based on these results, we investigated the influence of calpains on the pathogenesis of SCA3 in vivo. For this purpose, we enhanced calpain activity in a SCA3 transgenic mouse model by knocking out the endogenous calpain inhibitor calpastatin. Double-mutant mice demonstrated an aggravated neurological phenotype with an increased number of nuclear aggregates and accelerated neurodegeneration in the cerebellum. This study confirms the critical importance of calcium-dependent calpain-type proteases in the pathogenesis of SCA3 and suggests that the manipulation of the ataxin-3 cleavage pathway and the regulation of intracellular calcium homeostasis may represent novel targets for therapeutic intervention in SCA3. Topics: Animals; Ataxin-3; Calcium; Calcium-Binding Proteins; Calpain; Cerebellum; Disease Models, Animal; Gene Deletion; Gene Expression Regulation; Gene Knockout Techniques; Genotype; Glycoproteins; HEK293 Cells; Homeostasis; Humans; Immunohistochemistry; Machado-Joseph Disease; Mice; Mice, Knockout; Mutation; Nerve Tissue Proteins; Nuclear Proteins; Peptides; Phenotype; Repressor Proteins; Transcription Factors | 2013 |
Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease.
Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease. Topics: Active Transport, Cell Nucleus; Adult; Animals; Ataxin-3; Brain Chemistry; Calcium-Binding Proteins; Calpain; Female; Glycoproteins; Humans; Machado-Joseph Disease; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; Mutation; Neuroprotective Agents; Nuclear Proteins; Proteolysis; Transcription Factors | 2012 |