calpastatin has been researched along with Hyperglycemia* in 2 studies
2 other study(ies) available for calpastatin and Hyperglycemia
Article | Year |
---|---|
Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes.
Recently we have shown that calpain-1 activation contributes to cardiomyocyte apoptosis induced by hyperglycemia. This study was undertaken to investigate whether targeted disruption of calpain would reduce myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes.. Diabetes in mice was induced by injection of streptozotocin (STZ), and OVE26 mice were also used as a type 1 diabetic model. The function of calpain was genetically manipulated by cardiomyocyte-specific knockout Capn4 in mice and the use of calpastatin transgenic mice. Myocardial hypertrophy and fibrosis were investigated 2 and 5 months after STZ injection or in OVE26 diabetic mice at the age of 5 months. Cultured isolated adult mouse cardiac fibroblast cells were also investigated under high glucose conditions.. Calpain activity, cardiomyocyte cross-sectional areas, and myocardial collagen deposition were significantly increased in both STZ-induced and OVE26 diabetic hearts, and these were accompanied by elevated expression of hypertrophic and fibrotic collagen genes. Deficiency of Capn4 or overexpression of calpastatin reduced myocardial hypertrophy and fibrosis in both diabetic models, leading to the improvement of myocardial function. These effects were associated with a normalization of the nuclear factor of activated T-cell nuclear factor-κB and matrix metalloproteinase (MMP) activities in diabetic hearts. In cultured cardiac fibroblasts, high glucose-induced proliferation and MMP activities were prevented by calpain inhibition.. Myocardial hypertrophy and fibrosis in diabetic mice are attenuated by reduction of calpain function. Thus targeted inhibition of calpain represents a potential novel therapeutic strategy for reversing diabetic cardiomyopathy. Topics: Animals; Calcium-Binding Proteins; Calpain; Cardiomyopathy, Hypertrophic; Cell Proliferation; Cells, Cultured; Diabetes Mellitus, Type 1; Diabetic Cardiomyopathies; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Heart; Hyperglycemia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Molecular Targeted Therapy; Myocardium; Streptozocin | 2011 |
Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes.
Cardiomyocyte apoptosis contributes to cardiac complications of diabetes. The aim of this study was to investigate the role of calpain in cardiomyocyte apoptosis induced by hyperglycaemia.. In cultured adult rat ventricular cardiomyocytes, high glucose (33 mM) increased calpain activity and induced apoptosis, concomitant with the impairment of Na+/K+ ATPase activity. These effects of high glucose on cardiomyocytes were abolished by various pharmacological calpain inhibitors, knockdown of calpain-1 but not calpain-2 using siRNA, or over-expression of calpastatin, a specific endogenous calpain inhibitor. The effect of calpain inhibition on cardiomyocyte apoptosis was abrogated by ouabain, a selective inhibitor of Na+/K+ ATPase. Furthermore, blocking gp91(phox)-NADPH oxidase activation, L-type calcium channels, or ryanodine receptors prevented calpain activation and apoptosis in high glucose-stimulated cardiomyocytes. In a mouse model of streptozotocin-induced diabetes, administration of different calpain inhibitors blocked calpain activation, increased the Na+/K+ ATPase activity, and decreased apoptosis in the heart.. Calpain-1 activation induces apoptosis through down-regulation of the Na+/K+ ATPase activity in high glucose-stimulated cardiomyocytes and in vivo hyperglycaemic hearts. High glucose-induced calpain-1 activation is mediated through the NADPH oxidase-dependent pathway and associated with activation of L-type calcium channels and ryanodine receptors. Our data suggest that calpain activation may be important in the development of diabetic cardiomyopathy and thus may represent a potential therapeutic target for diabetic heart diseases. Topics: Animals; Apoptosis; Calcium; Calcium Channels; Calcium-Binding Proteins; Calpain; Caspase 3; Enzyme Activation; Hyperglycemia; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; NADPH Oxidase 2; NADPH Oxidases; Sodium-Potassium-Exchanging ATPase | 2009 |