calpastatin and Endotoxemia

calpastatin has been researched along with Endotoxemia* in 1 studies

Other Studies

1 other study(ies) available for calpastatin and Endotoxemia

ArticleYear
Over-expression of calpastatin inhibits calpain activation and attenuates myocardial dysfunction during endotoxaemia.
    Cardiovascular research, 2009, Jul-01, Volume: 83, Issue:1

    Lipopolysaccharide (LPS) induces cardiomyocyte caspase-3 activation and proinflammatory factors, in particular tumour necrosis factor-alpha (TNF-alpha) production, both of which contribute to myocardial dysfunction during sepsis. The present study was to investigate the roles of calpain/calpastatin system in cardiomyocyte caspase-3 activation, TNF-alpha expression, and myocardial dysfunction during LPS stimulation.. In cultured adult rat cardiomyocytes, LPS (1 microg/mL) induced calpain and caspase-3 activity, and up-regulated TNF-alpha expression. These effects of LPS were abrogated by over-expression of calpastatin, an endogenous calpain inhibitor, transfection of calpain-1 siRNA, or various pharmacological calpain inhibitors. Furthermore, blocking gp91(phox)-NADPH oxidase prevented calpain and caspase-3 activation and decreased TNF-alpha expression in LPS-stimulated cardiomyocytes. To investigate the role of calpastatin in endotoxaemia, transgenic mice with calpastatin over-expression (CAST-Tg) and wild-type mice were treated with LPS (4 mg/kg, i.p.) or saline in the presence of calpain inhibitor-III (10 mg/kg, i.p.) for 4 h, and their heart function was measured with a Langendorff system. Over-expression of calpastatin significantly attenuated myocardial dysfunction (P < 0.05). Consistently, calpain activity, caspase-3 activity, and TNF-alpha expression were also reduced in CAST-Tg and calpain inhibitor-III compared with wild-type and vehicle-treated hearts, respectively.. gp91(phox)-NADPH oxidase-mediated calpain-1 activation induces caspase-3 activation and TNF-alpha expression in cardiomyocytes during LPS stimulation. Over-expression of calpastatin inhibits calpain activation and improves myocardial function in endotoxaemia. The present study suggests that targeting calpain/calpastatin system may be a potential therapeutic intervention for septic hearts.

    Topics: Acrylates; Animals; Calcium-Binding Proteins; Calpain; Caspase 3; Cells, Cultured; Cysteine Proteinase Inhibitors; Dipeptides; Disease Models, Animal; Endotoxemia; Heart; Lipopolysaccharides; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardium; Myocytes, Cardiac; NADPH Oxidase 2; NADPH Oxidases; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Tumor Necrosis Factor-alpha

2009