calpain-inhibitor-iii and Neurodegenerative-Diseases

calpain-inhibitor-iii has been researched along with Neurodegenerative-Diseases* in 3 studies

Other Studies

3 other study(ies) available for calpain-inhibitor-iii and Neurodegenerative-Diseases

ArticleYear
A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy.
    Neurobiology of disease, 2017, Volume: 102

    In this study, we used the pilocarpine model of epilepsy to evaluate the involvement of calpain dysregulation on epileptogenesis. Detection of spectrin breakdown products (SBDPs, a hallmark of calpain activation) after induction of pilocarpine-induced status epilepticus (SE) and before appearance of spontaneous seizure suggested the existence of sustained calpain activation during epileptogenesis. Acute treatment with a cell permeable inhibitor of calpain, MDL-28170, resulted in a partial but significant reduction on seizure burden. The reduction on seizure burden was associated with a limited reduction on the generation of SBDPs but was correlated with a reduction in astrocytosis, microglia activation and cell sprouting. Together, these observations provide evidence for the role of calpain in epileptogenesis. In addition, provide proof-of-principle for the use of calpain inhibitors as a novel strategy to prevent epileptic seizures and its associated pathologies.

    Topics: Animals; Anticonvulsants; Calpain; Cerebral Cortex; Dipeptides; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy, Temporal Lobe; Glycoproteins; Hippocampus; Inflammation; Male; Neurodegenerative Diseases; Neurons; Pilocarpine; Random Allocation; Rats, Sprague-Dawley; Seizures

2017
8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair.
    The Journal of clinical investigation, 2012, Volume: 122, Issue:12

    8-Oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species, is associated with carcinogenesis and neurodegeneration. Although the mechanism by which 8-oxoG causes carcinogenesis is well understood, the mechanism by which it causes neurodegeneration is unknown. Here, we report that neurodegeneration is triggered by MUTYH-mediated excision repair of 8-oxoG-paired adenine. Mutant mice lacking 8-oxo-2'-deoxyguanosine triphosphate-depleting (8-oxo-dGTP-depleting) MTH1 and/or 8-oxoG-excising OGG1 exhibited severe striatal neurodegeneration, whereas mutant mice lacking MUTYH or OGG1/MUTYH were resistant to neurodegeneration under conditions of oxidative stress. These results indicate that OGG1 and MTH1 are protective, while MUTYH promotes neurodegeneration. We observed that 8-oxoG accumulated in the mitochondrial DNA of neurons and caused calpain-dependent neuronal loss, while delayed nuclear accumulation of 8-oxoG in microglia resulted in PARP-dependent activation of apoptosis-inducing factor and exacerbated microgliosis. These results revealed that neurodegeneration is a complex process caused by 8-oxoG accumulation in the genomes of neurons and microglia. Different signaling pathways were triggered by the accumulation of single-strand breaks in each type of DNA generated during base excision repair initiated by MUTYH, suggesting that suppression of MUTYH may protect the brain under conditions of oxidative stress.

    Topics: Animals; Apoptosis Inducing Factor; Benzamides; Calpain; Cell Nucleus; Corpus Striatum; Dipeptides; DNA Breaks, Single-Stranded; DNA Glycosylases; DNA Repair; DNA, Mitochondrial; Guanine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Mitochondria; Motor Activity; Neurodegenerative Diseases; Nitro Compounds; Oxidative Stress; Phosphoric Monoester Hydrolases; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Propionates

2012
Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation.
    Biochemical and biophysical research communications, 2002, Nov-15, Volume: 298, Issue:5

    Hyperphosphorylated tau protein is the primary component of neurofibrillary tangles observed in several neurodegenerative disorders. It has been hypothesized that in certain pathological conditions, the calcium activated protease, calpain, would cleave the cyclin-dependent kinase 5 (cdk5) activator p35 to a p25 fragment, which would lead to augmented cdk5 activity, and cdk5-mediated tau hyperphosphorylation. To test this hypothesis, we induced calpain-mediated p35 cleavage in rat hippocampal neuronal cultures and studied the relationship between p25 production, cdk5 activity, and tau phosphorylation. In glutamate-treated cells p35 was cleaved to p25 and this was associated with elevated cdk5 activity. However, tau phosphorylation was concomitantly decreased at multiple sites. The calpain inhibitor MDL28170 prevented the cleavage of p35 but had no effect on tau phosphorylation, suggesting that calpain-mediated processes, i.e., the cleavage of p35 to p25 and cdk5 activation, do not contribute to tau phosphorylation in these conditions. Treatment of the neuronal cultures with N-methyl-D-aspartic acid or with calcium ionophores resulted in an outcome highly similar to that of glutamate. We conclude that, in neuronal cells, the cleavage of p35 to p25 is associated with increased activity of cdk5 but not with tau hyperphosphorylation.

    Topics: Animals; Calcimycin; Calpain; Cells, Cultured; Cyclin-Dependent Kinase 5; Cyclin-Dependent Kinases; Dipeptides; Enzyme Activation; Enzyme Inhibitors; Glutamic Acid; Ionomycin; Ionophores; N-Methylaspartate; Nerve Tissue Proteins; Neurodegenerative Diseases; Neurofibrillary Tangles; Neurons; Phosphorylation; Rats; tau Proteins

2002
chemdatabank.com