calpain-inhibitor-iii and Heart-Failure

calpain-inhibitor-iii has been researched along with Heart-Failure* in 3 studies

Other Studies

3 other study(ies) available for calpain-inhibitor-iii and Heart-Failure

ArticleYear
The role of desmin alterations in mechanical electrical feedback in heart failure.
    Life sciences, 2020, Jan-15, Volume: 241

    Mechanoelectric feedback (MEF) was related to malignant arrhythmias in heart failure (HF). Desmin is a cytoskeleton protein and could be involved in MEF as a mechanoelectrical transducer. In this study, we will discuss the role of desmin alterations in mechanical electrical feedback in heart failure and its mechanisms.. We used both an in vivo rat model and an in vitro cardiomyocyte model to address this issue. For the in vivo experiments, we establish a sham group, an HF group, streptomycin (SM) group, and an MDL-28170 group. The occurrence of ventricular arrhythmias (VA) was recorded in each group. For the in vitro cardiomyocyte model, we established an NC group, a si-desmin group, and a si-desmin + NBD IKK group. The expression of desmin, IKKβ, p-IKKβ, IKBα, p-NF-κB, and SERCA2 were detected in both in vivo and in vitro experiments. The content of Ca. An increased number of VAs were found in the HF group. SM and MDL-28170 can reduce desmin breakdown and the number of VAs in heart failure. The knockdown of desmin in the cardiomyocyte can activate the NF-κB pathway, decrease the level of SERCA2, and result in abnormal distribution of Ca. Overall, desmin may participate in MEF through the NF-κB pathway. This study provides a potential therapeutic target for VA in HF.

    Topics: Animals; Calcium; Calpain; Cells, Cultured; Desmin; Dipeptides; Disease Models, Animal; Electrocardiography; Feedback, Physiological; Gene Knockdown Techniques; Heart Failure; Male; Myocytes, Cardiac; NF-kappa B; Rats, Sprague-Dawley; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Tachycardia, Ventricular

2020
Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure.
    PloS one, 2013, Volume: 8, Issue:4

    Calpain is an intracellular Ca²⁺-activated protease that is involved in numerous Ca²⁺ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca²⁺-dependent increase of the late sodium current (INaL) in failing heart. Chronic heart failure (HF) was induced in 2 dogs by multiple coronary artery embolization. Using a conventional patch-clamp technique, the whole-cell INaL was recorded in enzymatically isolated ventricular cardiomyocytes (VCMs) in which INaL was activated by the presence of a higher (1 μM) intracellular [Ca²⁺] in the patch pipette. Cell suspensions were exposed to a cell- permeant calpain inhibitor MDL-28170 for 1-2 h before INaL recordings. The numerical excitation-contraction coupling (ECC) model was used to evaluate electrophysiological effects of calpain inhibition in silico. MDL caused acceleration of INaL decay evaluated by the two-exponential fit (τ₁ = 42±3.0 ms τ₂ = 435±27 ms, n = 6, in MDL vs. τ₁ = 52±2.1 ms τ₂ = 605±26 control no vehicle, n = 11, and vs. τ₁ = 52±2.8 ms τ₂ = 583±37 ms n = 7, control with vehicle, P<0.05 ANOVA). MDL significantly reduced INaL density recorded at -30 mV (0.488±0.03, n = 12, in control no vehicle, 0.4502±0.0210, n = 9 in vehicle vs. 0.166±0.05pA/pF, n = 5, in MDL). Our measurements of current-voltage relationships demonstrated that the INaL density was decreased by MDL in a wide range of potentials, including that for the action potential plateau. At the same time the membrane potential dependency of the steady-state activation and inactivation remained unchanged in the MDL-treated VCMs. Our ECC model predicted that calpain inhibition greatly improves myocyte function by reducing the action potential duration and intracellular diastolic Ca²⁺ accumulation in the pulse train.. Calpain inhibition reverses INaL changes in failing dog ventricular cardiomyocytes in the presence of high intracellular Ca²⁺. Specifically it decreases INaL density and accelerates INaL kinetics resulting in improvement of myocyte electrical response and Ca²⁺ handling as predicted by our in silico simulations.

    Topics: Animals; Calpain; Computer Simulation; Dipeptides; Disease Models, Animal; Dogs; Heart Failure; Heart Ventricles; Membrane Potentials; Models, Biological; Myocytes, Cardiac; Sodium

2013
Calpain inhibition preserves talin and attenuates right heart failure in acute pulmonary hypertension.
    American journal of respiratory cell and molecular biology, 2012, Volume: 47, Issue:3

    Right heart failure from right ventricular (RV) pressure overload is a major cause of morbidity and mortality, but its mechanism is incompletely understood. We tested the hypothesis that right heart failure during 4 hours of RV pressure overload is associated with alterations of the focal adhesion protein talin, and that the inhibition of calpain attenuates RV dysfunction and preserves RV talin. Anesthetized open-chest pigs treated with the calpain inhibitor MDL-28170 (n = 20) or inactive vehicle (n = 23) underwent 4 hours of RV pressure overload by pulmonary artery constriction (initial RV systolic pressure, 64 ± 1 and 66 ± 1 mm Hg in MDL-28170 and vehicle-treated pigs, respectively). Progressive RV contractile dysfunction was attenuated by MDL-28170: after 4 hours of RV pressure overload, RV systolic pressure was 44 ± 4 mm Hg versus 49 ± 6 mm Hg (P = 0.011), and RV stroke work was 72 ± 5% of baseline versus 90 ± 5% of baseline, (P = 0.027), in vehicle-treated versus MDL-28170-treated pigs, respectively. MDL-28170 reduced the incidence of hemodynamic instability (death or systolic blood pressure of < 85 mm Hg) by 46% (P = 0.013). RV pressure overload disrupted talin organization. MDL-28170 preserved talin abundance in the RV free wall (P = 0.039), and talin abundance correlated with the maintenance of RV free wall stroke work (r = 0.58, P = 0.0039). α-actinin and vinculin showed similar changes according to immunohistology. Right heart failure from acute RV pressure overload is associated with reduced talin abundance and disrupted talin organization. Calpain inhibition preserves the abundance and organization of talin and RV function. Calpain inhibition may offer clinical utility in treating acute cor pulmonale.

    Topics: Actinin; Acute Disease; Animals; Calpain; Dipeptides; Electrophoresis, Polyacrylamide Gel; Heart Failure; Heart Ventricles; Hypertension, Pulmonary; Swine; Talin

2012