calpain and Supranuclear-Palsy--Progressive

calpain has been researched along with Supranuclear-Palsy--Progressive* in 2 studies

Other Studies

2 other study(ies) available for calpain and Supranuclear-Palsy--Progressive

ArticleYear
Calpain activation in neurodegenerative diseases: confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2.
    Acta neuropathologica, 2002, Volume: 104, Issue:1

    The calcium-activated protease calpain cleaves a variety of biologically important proteins and serves, therefore, as a key regulator of many cellular functions. Activation of both main isoforms, calpain 1 and calpain 2, was demonstrated previously in Alzheimer's disease. In this report, antibodies specifically recognizing the active form of calpain 2 were used to investigate calpain 2 activation in a broad range of neurodegenerative diseases, utilizing multiple-label confocal immunofluorescence imaging. With rare exceptions, the active form of calpain 2 was found in colocalization with hyperphosphorylated tau protein. Aggregates of mutated huntingtin, alpha-synuclein, or unidentified protein in motor neuron disease type of frontotemporal dementia were always negative. These findings indicate that calpain 2 activation is not a general response to protein aggregation. In tauopathies, more pathological inclusions were labeled for hyperphosphorylated tau than for activated calpain 2. The extent of colocalization varied in both a disease-specific and cell-type specific manner. The active form of calpain 2 was detected in 50-75% of tau neurofibrillary pathology in Alzheimer's disease, Alzheimer neurofibrillary changes and Down's syndrome, as well as in the accompanying Alzheimer-type tau pathology in diffuse Lewy bodies disease, progressive supranuclear palsy, and corticobasal degeneration. For glial cells, only 10-25% of tuft-shaped astrocytes, glial plaques, or coiled bodies contained activated calpain 2. The majority of Pick bodies were negative. The association of calpain 2 activation with hyperphosphorylated tau might be the result of an attempt by the calpain proteolytic system to degrade the tau protein aggregates. Alternatively, calpain 2 could be directly involved in tau hyperphosphorylation by modulating protein kinase activities. Overall, these results provide evidence of the important role of the calpain proteolytic system in the pathogenesis of neurodegenerative diseases with tau neurofibrillary pathology.

    Topics: Adolescent; Adult; Aged; Aged, 80 and over; Alzheimer Disease; Antibody Specificity; Calpain; Down Syndrome; Female; Fluorescent Antibody Technique; Humans; Huntington Disease; Lewy Body Disease; Male; Middle Aged; Neurodegenerative Diseases; Neurofibrillary Tangles; Pick Disease of the Brain; Supranuclear Palsy, Progressive

2002
Increased M-calpain expression in the mesencephalon of patients with Parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death?
    Neuroscience, 1996, Volume: 73, Issue:4

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra and, to a lesser extent, the ventral tegmental area and catecholaminergic cell group A8. However, among these dopaminergic neurons, those expressing the calcium buffering protein calbindin are selectively preserved, suggesting that a rise in intracellular calcium concentrations may be involved in the cascade of events leading to nerve cell death in Parkinson's disease. We therefore analysed immunohistochemically the expression of the calcium-dependent protease calpain II (m-calpain) in the mesencephalon of patients with Parkinson's disease, progressive supranuclear palsy or striatonigral degeneration, where nigral dopaminergic neurons degenerate, and matched controls without nigral involvement. Calpain immunoreactivity was found in fibers and neuronal perikarya in the substantia nigra, the ventral tegmental area, catecholaminergic cell group A8 and the locus coeruleus. In patients with Parkinson's disease but not with the other neurodegenerative disorders, m-calpain immunoreactivity was detected in fibers with an abnormal morphology and in Lewy bodies. Sequential double staining revealed that most of these m-calpain-positive fibers and neuronal perikarya co-expressed tyrosine hydroxylase, indicating that most m-calpain neurons are catecholaminergic. Quantitative analysis of m-calpain staining in the substantia nigra and locus coeruleus revealed an increased density of fibers and neuronal perikarya in parkinsonian patients in both structures. These data suggest that increased calcium concentrations may be associated with nerve cell death in Parkinson's disease.

    Topics: Aged; Aged, 80 and over; Brain Diseases; Calpain; Cell Death; Corpus Striatum; Humans; Mesencephalon; Middle Aged; Nerve Degeneration; Neurons; Parkinson Disease; Reference Values; Staining and Labeling; Substantia Nigra; Supranuclear Palsy, Progressive; Tyrosine 3-Monooxygenase; Ubiquitins

1996