calpain and Status-Epilepticus

calpain has been researched along with Status-Epilepticus* in 10 studies

Reviews

1 review(s) available for calpain and Status-Epilepticus

ArticleYear
Programmed mechanisms of status epilepticus-induced neuronal necrosis.
    Epilepsia open, 2023, Volume: 8 Suppl 1

    Excitotoxicity is the underlying mechanism for all acute neuronal injury, from cerebral ischemia, status epilepticus, traumatic CNS injury, and hypoglycemia. It causes morphological neuronal necrosis, and it triggers a programmed cell death program. Excessive calcium entry through the NMDA-receptor-operated cation channel activates two key enzymes-calpain I and neuronal nitric oxide synthase (nNOS). Calpain I, a cytosolic enzyme, translocates to mitochondrial and lysosomal membranes, causing release of cytochrome c, endonuclease G, and apoptosis-inducing factor (AIF) from mitochondria and DNase II and cathepsins B and D from lysosomes. These all translocate to neuronal nuclei, creating DNA damage, which activates poly(ADP) ribose polymerase-1 (PARP-1) to form excessive amounts of poly(ADP) ribose (PAR) polymers, which translocate to mitochondrial membranes, causing release of truncated AIF (tAIF). The free radicals that are released from mitochondria and peroxynitrite, formed from nitric oxide (NO) from nNOS catalysis of L-arginine to L-citrulline, damage mitochondrial and lysosomal membranes and DNA. The end result is the necrotic death of neurons. Another programmed necrotic pathway, necroptosis, occurs through a parallel pathway. As investigators of necroptosis do not recognize the excitotoxic pathway, it is unclear to what extent each contributes to programmed neuronal necrosis. We are studying the extent to which each contributes to acute neuronal necrosis and the extent of cross-talk between these pathways.

    Topics: Apoptosis Inducing Factor; Calpain; Humans; Mitochondrial Membranes; Necrosis; Neurons; Poly Adenosine Diphosphate Ribose; Poly(ADP-ribose) Polymerases; Ribose; Status Epilepticus

2023

Other Studies

9 other study(ies) available for calpain and Status-Epilepticus

ArticleYear
Calpain-dependent cleavage of GABAergic proteins during epileptogenesis.
    Epilepsy research, 2019, Volume: 157

    Epileptogenesis is the processes by which a normal brain transforms and becomes capable of generate spontaneous seizures. In acquired epilepsy, it is thought that epileptogenesis can be triggered by a brain injury but the understanding of the cellular or molecular changes unraveling is incomplete. In the CA1 region of hippocampus less GABAergic activity precede the appearance of spontaneous seizures and calpain overactivation has been detected after chemoconvulsant-induced status epilepticus (SE). Inhibition of calpain overactivation following SE ameliorates seizure burden, suggesting a role for calpain dysregulation in epileptogenesis. The current study analyzed if GABAergic proteins (i.e., gephyrin, the vesicular GABA transporter and the potassium chloride co-transporter 2) undergo calpain-dependent cleavage during epileptogenesis. A time-dependent generation of break down products (BDPs) for these proteins was observed in the CA1 region of hippocampus after pilocarpine-induced SE. Generation of these BDPs was partially blocked by treatment with the calpain inhibitor MDL-28170. These findings suggest that calpain-dependent loss of GABAergic proteins might promote the erosion of inhibitory drive and contribute to hyperexcitability during epileptogenesis.

    Topics: Animals; CA1 Region, Hippocampal; Calpain; Male; Membrane Proteins; Neurons; Pilocarpine; Rats; Rats, Sprague-Dawley; Seizures; Status Epilepticus; Vesicular Inhibitory Amino Acid Transport Proteins

2019
Calpain-dependent truncated form of TrkB-FL increases in neurodegenerative processes.
    Molecular and cellular neurosciences, 2016, Volume: 75

    Recent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons. We grew neurons on a culture system that allowed studying the dendritic and axonal domains separately from the cell bodies. We found that a recently characterized calpain substrate, the neurotrophin receptor TrkB, is cleaved in the dendritic and axonal domain of neurons committed to die, and this constitutes an early step in the neuronal degeneration process. While the full-length TrkB (TrkB-FL) levels decreased, the truncated form of TrkB (Tc TrkB-FL) concurrently increased, leading to a TrkB-FL/Tc TrkB-FL imbalance, which is thought to be causally linked to neurodegeneration. We further show that the treatment with N-acetyl-Leu-Leu-norleucinal, a specific calpain activity blocker, fully protects the neuronal processes from degeneration, prevents the TrkB-FL/Tc TrkB-FL imbalance, and provides full neuroprotection. Moreover, the use of the TrkB antagonist ANA 12 at the time when the levels of TrkB-FL were significantly decreased, totally blocked neuronal death, suggesting that Tc TrkB-FL may have a role in neuronal death. These results indicate that the imbalance of these neurotrophins receptors plays a key role in neurite degeneration induced by seizures.

    Topics: Animals; Calcium; Calpain; Cell Death; Cells, Cultured; Hippocampus; Leupeptins; Neurons; Protease Inhibitors; Proteolysis; Rats; Rats, Wistar; Receptor, trkB; Status Epilepticus

2016
BDNF is required for seizure-induced but not developmental up-regulation of KCC2 in the neonatal hippocampus.
    Neuropharmacology, 2015, Volume: 88

    A robust increase in the functional expression of the neuronal K-Cl cotransporter KCC2 during CNS development is necessary for the emergence of hyperpolarizing ionotropic GABAergic transmission. BDNF-TrkB signaling has been implicated in the developmental up-regulation of KCC2 and, in mature animals, in fast activity-dependent down-regulation of KCC2 function following seizures and trauma. In contrast to the decrease in KCC2 expression observed in the adult hippocampus following trauma, seizures in the neonate trigger a TrkB-dependent up-regulation of neuronal Cl(-) extrusion capacity associated with enhanced surface expression of KCC2. Here, we show that this effect is transient, and impaired in the hippocampus of Bdnf(-/-) mice. Notably, however, a complete absence of BDNF does not compromise the increase in KCC2 protein or K-Cl transport functionality during neuronal development. Furthermore, we present data indicating that the functional up-regulation of KCC2 by neonatal seizures is temporally limited by calpain activity.

    Topics: Animals; Animals, Newborn; Blotting, Western; Brain-Derived Neurotrophic Factor; Calpain; Chlorides; Disease Models, Animal; Hippocampus; K Cl- Cotransporters; Kainic Acid; Mice, Knockout; Neurons; Seizures; Status Epilepticus; Symporters; Tissue Culture Techniques; Up-Regulation

2015
Calpain I activity and its relationship with hippocampal neuronal death in pilocarpine-induced status epilepticus rat model.
    Cell biochemistry and biophysics, 2013, Volume: 66, Issue:2

    This study aims to establish pilocarpine-induced rat model of status epilepticus (SE), observe the activity of calpain I in the rat hippocampus and the subsequent neuronal death, and explore the relationship between calpain I activity and neuronal death in the hippocampus. Fifty-eight adult male Wistar rats were assigned randomly into either control group (n = 8) or epilepsy group (n = 50). SE was induced in the epilepsy group using pilocarpine. Before the injection, the rats were given atropine sulfate to reduce the side effect of pilocarpine. All rats in the seizure group were grouped into either SE or non-SE, depending on whether they developed convulsive seizures. The rats in SE group were treated with chloral hydrate to stop seizures after 60 min. Control animals were treated with the same dose of 0.9 % saline. All rats were monitored for seizures. At 24 h after SE, the rats' left brain tissues were stained by HE and TUNEL. Neuronal necrosis and apoptosis in the hippocampal CA3 area were observed. Calpain I activity in the right hippocampus was also observed using western blotting. Eighty percent of the rats in the seizure group developed SE, of which 35 % died. No rat died in both the control and non-SE groups. At 24 h after SE, the number of HE-stained neurons decreased (SE group: 55.19 ± 8.23; control group: 102.13 ± 3.73; non-SE group: 101.2 ± 2.86) and the number of TUNEL-positive neurons increased (SE group: 4.91 ± 1.35; non-SE and control group: 0). No obvious changes were observed in the neurons of the control and non-SE group animals. The 76 kDa cleavage of calpain I (the average optical density ratio is 0.096 ± 0.015) emerged in the SE group. Neuronal death has a direct relationship with calpain I activity. There is high success rate and lower death rate for pilocarpine to induce SE. At 24 h after SE, activity of calpain I, neuronal necrosis and apoptosis increased in the hippocampus. Neuronal death has a direct relationship with calpain I activity, which suggests that calpain I plays an important role in neuronal damage during SE.

    Topics: Animals; Apoptosis; Atropine; Calpain; Chloral Hydrate; Disease Models, Animal; Hippocampus; Hypnotics and Sedatives; Linear Models; Male; Neurons; Parasympatholytics; Pilocarpine; Rats; Rats, Wistar; Status Epilepticus

2013
Cleavage of the vesicular GABA transporter under excitotoxic conditions is followed by accumulation of the truncated transporter in nonsynaptic sites.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Mar-23, Volume: 31, Issue:12

    GABA is the major inhibitory neurotransmitter in the CNS and changes in GABAergic neurotransmission affect the overall activity of neuronal networks. The uptake of GABA into synaptic vesicles is mediated by the vesicular GABA transporter (VGAT), and changes in the expression of the transporter directly regulate neurotransmitter release. In this work we investigated the changes in VGAT protein levels during ischemia and in excitotoxic conditions, which may affect the demise process. We found that VGAT is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, giving rise to a stable truncated cleavage product (tVGAT). VGAT cleavage was also observed after transient middle cerebral artery occlusion in mice, a cerebral ischemia model, and following intrahippocampal injection of kainate, but no effect was observed in transgenic mice overexpressing calpastatin, a calpain inhibitor. Incubation of isolated cerebrocortical synaptic vesicles with recombinant calpain also induced the cleavage of VGAT and formation of stable tVGAT. Immunoblot experiments using antibodies targeting different regions of VGAT and N-terminal sequencing analysis showed that calpain cleaves the transporter in the N-terminal region, at amino acids 52 and 60. Immunocytochemistry of GABAergic striatal neurons expressing GFP fusion proteins with the full-length VGAT or tVGAT showed that cleavage of the transporter induces a loss of synaptic delivery, leading to a homogeneous distribution of the protein along neurites. Our results show that excitotoxicity downregulates full-length VGAT, with a concomitant generation of tVGAT, which is likely to affect GABAergic neurotransmission and may influence cell death during ischemia.

    Topics: Animals; Blotting, Western; Brain Ischemia; Calpain; DNA; Excitatory Amino Acid Agonists; Female; gamma-Aminobutyric Acid; Immunohistochemistry; Infarction, Middle Cerebral Artery; Kainic Acid; Long-Term Potentiation; Mice; Mice, Inbred C57BL; Neurotoxins; PC12 Cells; Phosphoric Monoester Hydrolases; Plasmids; Pregnancy; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Status Epilepticus; Synapses; Synaptic Transmission; Transfection; Vesicular Glutamate Transport Proteins

2011
Participation of mu-calpain in status epilepticus-induced hippocampal injury.
    Brain research bulletin, 2009, Mar-16, Volume: 78, Issue:4-5

    We comment this manuscript recently published in Brain Res. Bull.: S. Wang, S. Wang, P. Shan, Z. Song, T. Dai, R. Wang, Z. Chi, Mu-calpain mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Brain Res. Bull. 76(1-2) (2008) 90-96.

    Topics: Animals; Antipsychotic Agents; Apoptosis; Apoptosis Inducing Factor; BH3 Interacting Domain Death Agonist Protein; Calpain; Caspase 3; Cysteine Proteinase Inhibitors; Cytochromes c; Dipeptides; Enzyme Activation; Hippocampus; Lithium Compounds; Mitochondria; Muscarinic Agonists; Neurons; Pilocarpine; Rats; Spectrin; Status Epilepticus

2009
Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus.
    Journal of neurochemistry, 2008, Volume: 105, Issue:3

    Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (10 mg/kg) intraperitoneally and killed 24 h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labeling in the CA1 and CA3 areas of the hippocampus in the rats that received kainic acid, when compared with saline-treated rats. Immunohistochemistry and western blot analysis for the calpain-derived breakdown products of spectrin showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus.

    Topics: Animals; Calpain; Caspases; Convulsants; Dipeptides; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Epilepsy; Fluoresceins; Hippocampus; Kainic Acid; Male; Nerve Degeneration; Organic Chemicals; Rats; Rats, Wistar; Spectrin; Status Epilepticus; Time Factors

2008
Mu-calpain mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus.
    Brain research bulletin, 2008, May-15, Volume: 76, Issue:1-2

    Status epilepticus (SE) is a severe clinical manifestation of epilepsy which causes brain damage. The pathological process and underlying mechanisms involved in the programmed cell death (PCD) are still not fully clear. In the current study, rats were induced SE by lithium-pilocarpine administration. Our data showed hippocampal neurons death appeared at 6h after SE and sustained for 7 days. By blotting the activation of mu-calpain and its specific cleavage of nonerythroid alpha-spectrin (alphaSpII) (145 kDa) was evident at 1 and 3 days after SE, which coincided with Bid activation, apoptosis inducing factor (AIF) translocation and cytochrome c release from mitochondria, whereas, activated caspase-3 and caspase-3-specific fragments of alphaSpII (120 kDa) predominantly appeared at 5 and 7 days after SE. Moreover, MDL-28170, a calpain inhibitor, partially rescued the neuron death and attenuated the expression of activated mu-calpain, cleavage of Bid (15 kDa), AIF translocation and cytochrome c release. Taken together, our study indicated that mu-calpain mediated hippocampal neuron PCD is prior to caspase-3 activation. It functioned via translocation of Bid, AIF and cytochrome c release.

    Topics: Animals; Antipsychotic Agents; Apoptosis Inducing Factor; BH3 Interacting Domain Death Agonist Protein; Calpain; Cell Death; Cysteine Proteinase Inhibitors; Cytochromes c; Dipeptides; Hippocampus; Humans; Lithium; Male; Muscarinic Agonists; Neurons; Pilocarpine; Random Allocation; Rats; Rats, Wistar; Spectrin; Status Epilepticus

2008
Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death.
    Brain research. Molecular brain research, 2004, Feb-05, Volume: 121, Issue:1-2

    The molecular mechanisms mediating degeneration in response to neuronal insults, including damage evoked by prolonged seizure activity, show substantial variability across laboratories and injury models. Here we investigate the extent to which the proportion of cell death occurring by apoptotic vs. necrotic mechanisms may be shifted by changing the temporal parameters of the insult. In initial studies with continuous seizures (status epilepticus, SE), signs of apoptotic degeneration were most clearly observed when SE occurred following a long latency (>86 min) after injection of kainic acid as compared with a short-latency SE (<76 min). Therefore, in this study we directly compared short- with long-latency SE for the expression of molecular markers for apoptosis and necrosis in an especially vulnerable brain region (rhinal cortex). Molecular markers of apoptosis (DNA fragmentation, cleavage of ICAD, an inhibitor of "caspase-activated DNase" (CAD), and prevalence of a caspase-generated fragment of alpha-spectrin) were detected following long-latency SE. Short-latency SE resulted in expression of predominantly necrotic features of cell death, such as "non-ladder" pattern of genomic DNA degradation, prevalence of a calpain-generated alpha-spectrin fragment, and absence of ICAD cleavage. Silver staining revealed no significant difference in the extent and spatial distribution of degeneration between long- or short-latency SE. These data indicate that the latency to onset of SE determines the extent to which apoptotic or necrotic mechanisms contribute to the degeneration following SE. The presence of a long latency period, during which multiple brief seizure episodes may occur, favors the occurrence of apoptotic cell death. It is possible that the absence of such "preconditioning" period in short-latency SE favors predominantly necrotic profile.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Boron Compounds; Calpain; Caspase 3; Caspases; Deoxyribonucleases; Disease Models, Animal; DNA Fragmentation; Kainic Acid; Male; Necrosis; Nerve Degeneration; Proteins; Rats; Rats, Sprague-Dawley; Seizures; Spectrin; Status Epilepticus; Time

2004