calpain has been researched along with Spinal-Cord-Diseases* in 3 studies
3 other study(ies) available for calpain and Spinal-Cord-Diseases
Article | Year |
---|---|
Experimental reovirus-induced acute flaccid paralysis and spinal motor neuron cell death.
Acute flaccid paralysis (AFP) describes the loss of motor function in 1 or more limbs commonly associated with viral infection and destruction of motor neurons in the anterior horns of the spinal cord. Therapy is limited, and the development of effective treatments is hampered by a lack of experimental models. Reovirus infection of neonatal mice provides a model for the study of CNS viral infection pathogenesis. Injection of the Reovirus serot Type 3 strains Abney (T3A) or Dearing (T3D) into the hindlimb of 1-day-old mice resulted in the development of AFP in more than 90% of infected mice. Acute flaccid paralysis began in the ipsilateral hindlimb at 8 to 10 days postinfection and progressed to paraplegia 24 hours later. Paralysis correlated with injury, neuron loss, and spread of viral antigen first to the ipsilateral and then to the contralateral anterior horns. As demonstrated by the activation of caspase 3 and its colocalization with viral antigen in the anterior horn and concomitant cleavage of poly-(adenosine diphosphate-ribose) polymerase, AFP was associated with apoptosis. Calpain activity and inducible nitric oxide synthase expression were both elevated in the spinal cords of paralyzed animals. This study represents the first detailed characterization of a novel and highly efficient experimental model of virus-induced AFP that will facilitate evaluation of therapeutic strategies targeting virus-induced paralysis. Topics: Animals; Animals, Newborn; Antigens, Viral; Apoptosis; Biomarkers; Calpain; Caspase 3; Cells, Cultured; Disease Models, Animal; Disease Progression; Mammalian orthoreovirus 3; Mice; Motor Neuron Disease; Motor Neurons; Nerve Degeneration; Nitric Oxide Synthase Type II; Paralysis; Poly(ADP-ribose) Polymerases; Reoviridae Infections; Spinal Cord Diseases; West Nile Fever | 2008 |
The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats.
Exposure to environmental toxins increases the risk of neurodegenerative diseases including Parkinson's disease (PD). Rotenone is a neurotoxin that has been used to induce experimental Parkinsonism in rats. We used the rotenone model of experimental Parkinsonism to explore a novel aspect of extra-nigral degeneration, the neurodegeneration of spinal cord (SC), in PD. Rotenone administration to male Lewis rats caused significant neuronal cell death in cervical and lumbar SC as compared with control animals. Dying neurons were motoneurons as identified by double immunofluorescent labeling for terminal deoxynucleotidyl transferase, recombinant-mediated dUTP nick-end labeling-positive (TUNEL(+)) cells and choline acetyltransferase (ChAT)-immunoreactivity. Neuronal death was accompanied by abundant astrogliosis and microgliosis as evidenced from glial fibrillary acidic protein (GFAP)-immunoreactivity and OX-42-immunoreactivity, respectively, implicating an inflammatory component during neurodegeneration in SC. However, the integrity of the white matter in SC was not affected by rotenone administration as evidenced from the non co-localization of any TUNEL(+) cells with GFAP-immunoreactivity and myelin basic protein (MBP)-immunoreactivity, the selective markers for astrocytes and oligodendrocytes, respectively. Increased activities of 76 kD active m-calpain and 17/19 kD active caspase-3 further demonstrated involvement of these enzymes in cell death in SC. The finding of ChAT(+) cell death also suggested degeneration of SC motoneurons in rotenone-induced experimental Parkinsonism. Thus, this is the first report of its kind in which the selective vulnerability of a putative parkinsonian target outside of nigrostriatal system has been tested using an environmental toxin to understand the pathophysiology of PD. Moreover, rotenone-induced degeneration of SC motoneuron in this model of experimental Parkinsonism progressed with upregulation of calpain and caspase-3. Topics: Animals; Calpain; Caspase 3; CD11b Antigen; Choline O-Acetyltransferase; Enzyme Activation; Glial Fibrillary Acidic Protein; In Situ Nick-End Labeling; Male; Motor Neurons; Myelin Basic Protein; Nerve Degeneration; Phosphopyruvate Hydratase; Rats; Rats, Inbred Lew; Rotenone; Spinal Cord Diseases; Time Factors; Tyrosine 3-Monooxygenase | 2007 |
Changes in myelin and axonal proteins in CaCl2-induced myelopathy in rat spinal cord.
Calcium-induced myelopathy was produced in rats by dripping 1.0 ml of a 10% solution of CaCl2 at pH 7.4 upon exposed spinal cord. Changes in spinal cord proteins were examined following application of calcium. Analysis of proteins by SDS-PAGE revealed progressive losses of neurofilament, microtubular, and glial filament proteins over a period of 8 hours to 5 days. Large losses of myelin proteins were also evident. The protein alterations observed correlate well with ultrastructural changes and resemble those previously found with physical trauma. These observations indicate that Ca2+ plays a pivotal role, possibly by activating proteinase(s), in the degeneration of axons and myelin sheath in both Ca2+-induced myelopathy and spinal cord injury. Topics: Animals; Axons; Brain; Calcium Chloride; Calpain; Electrophoresis, Polyacrylamide Gel; Glial Fibrillary Acidic Protein; Intermediate Filament Proteins; Microtubule Proteins; Myelin Proteins; Nerve Degeneration; Neurofilament Proteins; Rats; Rats, Inbred Strains; Spinal Cord; Spinal Cord Diseases; Time Factors | 1984 |