calpain has been researched along with Skin-Neoplasms* in 9 studies
9 other study(ies) available for calpain and Skin-Neoplasms
Article | Year |
---|---|
Preventing Calpain Externalization by Reducing ABCA1 Activity with Probenecid Limits Melanoma Angiogenesis and Development.
Calpains, intracellular proteases specifically inhibited by calpastatin, play a major role in neoangiogenesis involved in tumor invasiveness and metastasis. They are partly exteriorized via the ATP-binding cassette transporter A1(ABCA1) transporter, but the importance of this process in tumor growth is still unknown. The aim of our study was to investigate the role of extracellular calpains in a model of melanoma by blocking their extracellular activity or exteriorization. In the first approach, a B16-F10 model of melanoma was developed in transgenic mice expressing high extracellular levels of calpastatin. In these mice, tumor growth was inhibited by ∼ 3-fold compared with wild-type animals. In vitro cytotoxicity assays and in vivo tumor studies have demonstrated that this protection was associated with a defect in tumor neoangiogenesis. Similarly, in wild-type animals given probenecid to blunt ABCA1 activity, melanoma tumor growth was inhibited by ∼ 3-fold. Again, this response was associated with a defect in neoangiogenesis. In vitro studies confirmed that probenecid limited endothelial cell migration and capillary formation from vascular explants. The observed reduction in fibronectin cleavage under these conditions is potentially involved in the response. Collectively, these studies demonstrate that probenecid, by blunting ABCA1 activity and thereby calpain exteriorization, limits melanoma tumor neoangiogenesis and invasiveness. Topics: Animals; ATP Binding Cassette Transporter 1; Calcium-Binding Proteins; Calpain; Cell Line, Tumor; Cell Proliferation; Humans; Male; Melanoma, Experimental; Mice; Mice, Transgenic; Neovascularization, Pathologic; Probenecid; Skin Neoplasms | 2020 |
Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways.
There is increasing global incidence of highly metastatic melanoma and therapeutic strategies like those focusing on the downstream beta-catenin/MITF axis of invading melanoma cells are urgently needed. Targeting endoplasmic reticulum (ER) stress can promote cancer cell death and inhibit epithelial mesenchymal transition (EMT) in metastatic tumors. This study aimed to determine if Honokiol could promote ER stress-dependent apoptosis and regulate metastatic melanoma. The therapeutic efficacy of Honokiol was assessed using the highly metastatic melanoma xenograft mouse model for peritoneal metastasis and evaluated by computed tomography imaging. The ER stress marker, Calpain-10, delineated a novel proteolytic cleavage enzyme, while CHOP/GADD153-regulated apoptosis was used for gene silencing to determine the role of the β-catenin/MITF axis in melanoma cells. The results showed that Honokiol effectively decreased peritoneal dissemination and organ metastasis via ER stress activation and EMT marker inhibition. Knockdown Calpain-10 or CHOP/GADD153 blocked all of the biological effects in Honokiol-induced β-catenin/MITF cleavage, ERSE or TCF/LEF luciferase activity, and β-catenin kinase activity. These findings suggest that Honokiol can significantly thwart the progression of highly metastatic melanoma using the β-catenin/MITF axis via prompt Calpain-10 and CHOP/GADD153 regulated cascades. Topics: Animals; Antineoplastic Agents, Phytogenic; beta Catenin; Biphenyl Compounds; Calpain; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cyclin-Dependent Kinase 2; Endoplasmic Reticulum Stress; Gene Expression Regulation, Neoplastic; Humans; Lignans; Male; Melanoma; Mice, Inbred BALB C; Mice, Nude; Microphthalmia-Associated Transcription Factor; Peritoneal Neoplasms; Skin Neoplasms; Transcription Factor CHOP; Wnt Signaling Pathway; Xenograft Model Antitumor Assays | 2019 |
Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apoptotic and autophagic cell death.
The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure.. This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se.. Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug. Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Brain Neoplasms; Calpain; Cell Line, Tumor; Dacarbazine; Glioma; Humans; Male; Melanoma; Membrane Proteins; Mice; Mice, Inbred BALB C; Mice, Nude; Selenium; Skin Neoplasms; Temozolomide; Xenograft Model Antitumor Assays | 2012 |
The HSV-2 mutant DeltaPK induces melanoma oncolysis through nonredundant death programs and associated with autophagy and pyroptosis proteins.
Malignant melanoma is a highly aggressive and drug-resistant cancer. Virotherapy is a novel therapeutic strategy based on cancer cell lysis through selective virus replication. However, its clinical efficacy is modest, apparently related to poor virus replication within the tumors. We report that the growth compromised herpes simplex virus type 2 (HSV-2) mutant, DeltaPK, has strong oncolytic activity for melanoma largely caused by a mechanism other than replication-induced cell lysis. The ratio of dead cells (determined by trypan blue or ethidium homodimer staining) to cells that stain with antibody to the major capsid protein VP5 (indicative of productive infection) was 1.8-4.1 for different melanoma cultures at 24-72 h post-infection. Cell death was due to activation of calpain as well as caspases-7 and -3 and it was abolished by the combination of calpain (PD150606) and pancaspase (benzyloxycarbonyl-Val-Ala-Asp-fluormethyl ketone, z-VAD-fmk) inhibitors. Upregulation of the autopahgy protein Beclin-1 and the pro-apoptotic protein H11/HspB8 accompanied DeltaPK-induced melanoma oncolysis. Intratumoral DeltaPK injection (10(6)-10(7) plaque-forming unit (pfu)) significantly reduced melanoma tumor burden associated with calpain and caspases-7 and -3 activation, Beclin-1 and H11/HspB8 upregulation and activation of caspase-1-related inflammation. Complete remission was seen for 87.5% of the LM melanoma xenografts at 5 months after treatment termination. The data indicate that DeltaPK is a promising virotherapy for melanoma that functions through virus-induced programmed cell death pathways. Topics: Animals; Apoptosis; Autophagy; Calpain; Capsid Proteins; Caspase 3; Caspase 7; Caspase Inhibitors; Cell Line, Tumor; Gene Deletion; Herpesvirus 2, Human; Humans; Melanoma; Mice; Mice, Nude; Oncolytic Virotherapy; Oncolytic Viruses; Protein Serine-Threonine Kinases; Ribonucleotide Reductases; Skin Neoplasms; Virus Replication; Xenograft Model Antitumor Assays | 2010 |
Wnt5A activates the calpain-mediated cleavage of filamin A.
We have previously shown that Wnt5A and ROR2, an orphan tyrosine kinase receptor, interact to mediate melanoma cell motility. In other cell types, this can occur through the interaction of ROR2 with the cytoskeletal protein filamin A. Here, we found that filamin A protein levels correlated with Wnt5A levels in melanoma cells. Small interfering RNA (siRNA) knockdown of WNT5A decreased filamin A expression. Knockdown of filamin A also corresponded to a decrease in melanoma cell motility. In metastatic cells, filamin A expression was predominant in the cytoplasm, which western analysis indicated was due to the cleavage of filamin A in these cells. Treatment of nonmetastatic melanoma cells with recombinant Wnt5A increased filamin A cleavage, and this could be prevented by the knockdown of ROR2 expression. Further, BAPTA-AM chelation of intracellular calcium also inhibited filamin A cleavage, leading to the hypothesis that Wnt5A/ROR2 signaling could cleave filamin A through activation of calcium-activated proteases, such as calpains. Indeed, WNT5A knockdown decreased calpain 1 expression, and by inhibiting calpain 1 either pharmacologically or using siRNA, it decreased cell motility. Our results indicate that Wnt5A activates calpain-1, leading to the cleavage of filamin A, which results in a remodeling of the cytoskeleton and an increase in melanoma cell motility. Topics: Calpain; Cell Line, Tumor; Cell Movement; Chelating Agents; Contractile Proteins; Cytoskeleton; Egtazic Acid; Filamins; Gene Expression Regulation, Neoplastic; Humans; Melanoma; Microfilament Proteins; Proto-Oncogene Proteins; Receptor Tyrosine Kinase-like Orphan Receptors; Receptors, Cell Surface; RNA, Small Interfering; Skin Neoplasms; Wnt Proteins; Wnt-5a Protein | 2009 |
Novel variants of muscle calpain 3 identified in human melanoma cells: cisplatin-induced changes in vitro and differential expression in melanocytic lesions.
Calpains are cysteine proteases comprising members ubiquitously expressed in human tissues and other tissue-specific isoforms. Alterations of calpain 3 (p94), the muscle-specific isoform that contains three peculiar sequences (NS, IS1 and IS2), are strictly associated to the limb-girdle muscular dystrophy type 2A, in which a myonuclear apoptosis has been documented. Our recent demonstration of a proapoptotic role of ubiquitous calpains in drug-induced apoptosis of melanoma cells prompted us to investigate the expression of calpain 3 in human melanoma cell lines undergoing apoptosis and in melanocytic lesions. In melanoma cell lines, we have identified two novel splicing variants of calpain 3 (hMp78 and hMp84): they have an atypical initiation exon and a putative nuclear localization signal, the shorter one lacks IS1 inset and both proteins are extremely unstable. Virtually, both isoforms (prevalently as cleavage forms) are localized in cytoplasm and in nucleoli. In cisplatin-treated preapoptotic cells, an increase of both transcription and autoproteolytic cleavage of the novel variants is observed; the latter event is prevented by the inhibitor of ubiquitous calpains, calpeptin, which is also able to protect from apoptosis. Interestingly, among melanocytic lesions, the expression of these novel variants is significantly downregulated, compared with benign nevi, in the most aggressive ones, i.e. in vertical growth phase melanoma and, even more, in metastatic melanoma cells, characterized by invasiveness properties and usually highly resistant to apoptosis. On the whole, our observations suggest that calpain 3 variants can play a proapoptotic role in melanoma cells and its downregulation, as observed in highly aggressive lesions, could contribute to melanoma progression. Topics: Alternative Splicing; Antineoplastic Agents; Apoptosis; Biopsy; Calpain; Cell Line, Tumor; Cell Nucleolus; Cisplatin; Cytoplasm; Dipeptides; Dysplastic Nevus Syndrome; Gene Expression Regulation, Neoplastic; Humans; Melanoma; Muscle Proteins; Neoplasm Metastasis; Nevus; RNA, Messenger; Skin Neoplasms | 2009 |
SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival.
The tumor suppressor retinoblastoma protein (Rb) plays a pivotal role in the regulation of cell proliferation and sensitivity to apoptosis through binding to E2F transcription factors. Loss of Rb in response to genotoxic stress or inflammatory cytokines can enhance cell death, in part, by eliminating Rb-mediated repression of proapoptotic gene transcription. Here we show that calpain cleavage of Rb facilitates Rb loss by proteasome degradation and that this may occur during tumor necrosis factor alpha-induced apoptosis. The cytoprotective, Rb-binding protein SerpinB2 (plasminogen activator inhibitor type 2) protects Rb from calpain cleavage, increasing Rb levels and enhancing cell survival. Chromatin immunoprecipitation assays show that the increased Rb levels selectively enhance Rb repression of proapoptotic gene transcription. This cytoprotective role of SerpinB2 is illustrated by reduced susceptibility of SerpinB2-deficient mice to multistage skin carcinogenesis, where Rb-dependent cell proliferation competes with apoptosis during initiation of papilloma development. These data identify SerpinB2 as a cell survival factor that modulates Rb repression of proapoptotic signal transduction and define a new posttranslational mechanism for selective regulation of the intracellular levels of Rb. Topics: Animals; Apoptosis; Calpain; Cell Survival; Fibroblasts; Gene Expression Regulation, Neoplastic; Genetic Predisposition to Disease; HeLa Cells; Humans; Jurkat Cells; Mice; Plasminogen Activator Inhibitor 2; Retinoblastoma Protein; Signal Transduction; Skin Neoplasms | 2008 |
Different expression patterns of calpain isozymes 1 and 2 (CAPN1 and 2) in squamous cell carcinomas (SCC) and basal cell carcinomas (BCC) of human skin.
Calpain, also named CAPN (for calcium-activated neutral protease), is a ubiquitous intracellular cytoplasmic non-lysosomal cysteine endopeptidase that requires calcium ions to exert its activity. Two major isoenzymes are known- micro -calpain (CAPN1) and m-calpain (CAPN2)-requiring micromolar and millimolar calcium concentrations for activation, respectively. Many known substrates of the different calpain isoenzymes, such as the transcription factors c-Fos and c-Jun, the tumour suppressor protein p53, protein kinase C, pp60src, or the adhesion molecule integrin, have been implicated in the pathogenesis of various malignancies including squamous (SCC) and basal (BCC) cell carcinomas of human skin, suggesting an important role of the calpain isoenzymes in malignant diseases. We have analysed the expression of CAP1 and CAPN2 protein and mRNA expression in BCCs and SCCs of human skin. Interestingly, CAPN1 immunoreactivity (streptavidin-peroxidase technique) was markedly reduced in BCCs compared to normal human skin or SCCs, while in contrast CAPN1 mRNA levels (determined by real-time PCR) were markedly elevated in BCCs and SCCs compared to normal human skin. No differences were found analysing CAPN2 protein and mRNA expression in normal human skin, BCCs and SCCs. In conclusion, we have demonstrated for the first time alterations in calpain mRNA expression and protein content in malignant skin tumours that may be of importance for the tumorigenesis and growth characteristics of BCCs and SCCs. However, our results do not allow conclusions on the function of CAPN1 and CAPN2 in BCCs and SCCs. It is not known if the CAPN genes in BCCs or SCCs exhibit functionally inactivating mutations or whether decreased CAPN1 protein expression in BCCs and elevated CAPN1 mRNA in BCCs and SCCs reflect a feedback loop coupled with increased degradation or proteolysis of CAPN1 protein. Topics: Blotting, Northern; Calpain; Carcinoma, Basal Cell; Carcinoma, Squamous Cell; Gene Expression; Humans; Immunoenzyme Techniques; Neoplasm Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Neoplasm; Skin; Skin Neoplasms | 2003 |
Vitamin D-induced apoptosis and melanoma: does calpain represent the major execution protease rather than caspases?
Topics: Apoptosis; Calcium; Calpain; Humans; Melanoma; Skin Neoplasms; Vitamin D | 2003 |