calpain and Ocular-Hypertension

calpain has been researched along with Ocular-Hypertension* in 3 studies

Other Studies

3 other study(ies) available for calpain and Ocular-Hypertension

ArticleYear
Degeneration and dysfunction of retinal neurons in acute ocular hypertensive rats: involvement of calpains.
    Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics, 2014, Volume: 30, Issue:5

    Retinal ischemic diseases primarily lead to damage of the inner retinal neurons. Electrophysiological studies also suggest impairment of the inner retinal neurons. Our recent studies with acute ocular hypertensive rats confirmed damage predominantly in the inner retinal layer along with the ganglion cell layer, changes that are ameliorated by the calpain inhibitor SNJ-1945. However, we do not know which specific neuronal cells in the inner retinal layer are damaged by calpains. Thus, the purpose of the present study was to identify specific calpain-damaged neuronal cells in the inner retina from acute ocular hypertensive rats.. Intraocular pressure was elevated to 110 mm Hg for 40 min. One hour after ocular hypertension (OH), SNJ-1945 was administrated as a single oral dose of 50 mg/kg. Retinal function was assessed by scotopic electroretinography (ERG). Histological degeneration was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL), and immunostaining in thin sections and flat mounts of the retina. Calpain activation was determined by proteolysis of the calpain substrate α-spectrin.. OH caused calpain activation, increased TUNEL-positive staining, decreased thickness of the inner nuclear layer (INL), and decreased amplitudes of the ERG a- and b-waves and oscillatory potentials (OPs). SNJ-1945 significantly inhibited calpain activation and the decrease in ERG values. Interestingly, the changes in the b-wave and OPs amplitudes were significantly correlated to changes in the thickness of the INL. In the inner retinal layer, the numbers of rod bipolar, cone-ON bipolar, and amacrine cells were decreased after OH. SNJ-1945 suppressed the loss of cone-ON bipolar and amacrine cells, but did not inhibit the loss of rod bipolar cells. We also observed increased glial fibrillary acid protein-positive staining in the Müller cells after OH and the treatment with SNJ-1945.. Calpains may contribute to ischemic retinal dysfunction by causing the loss of cone-ON bipolar and amacrine cells and causing the activation of Müller cells. Calpain inhibitor SNJ-1945 may be a candidate compound for treatment of retinal ischemic disease.

    Topics: Acute Disease; Animals; Calpain; Carbamates; Male; Ocular Hypertension; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Retinal Neurons

2014
Presence of calpain-induced proteolysis in retinal degeneration and dysfunction in a rat model of acute ocular hypertension.
    Journal of neuroscience research, 2006, May-15, Volume: 83, Issue:7

    The purpose of this study was to determine if calpain-induced proteolysis was associated with retinal degeneration or dysfunction in the rat acute ocular hypertensive model. Acute glaucoma was produced by elevation of IOP to 120 mm Hg for 1 hr. Retinal degeneration was evaluated by H&E staining and apoptosis was determined by TUNEL staining in histologic sections of retina. Electroretinogram (ERG) was carried out to evaluate changes in functionality. Activation of calpains was determined by casein zymography and immunoblotting. Total calcium in retina was measured by atomic absorption spectrophotometry. Proteolysis of alpha-spectrin, tau, cdk5, and p35 (a regulator of cdk5) were evaluated by immunoblotting. The thickness of inner plexiform layer (IPL) and inner nuclear layer (INL), and the number of cells in the ganglion cell layer (GCL) decreased after ocular hypertension. Numerous cells in the INL stained positive for TUNEL and some cells in the outer nuclear layer (ONL) showed TUNEL staining. The a-wave in ERG was temporarily decreased after ocular hypertension and then recovered to normal. In contrast, the b-wave was completely lost. Calpains were activated after ocular hypertension. Activation of calpains was associated with increased calcium in retina. Calpain-dependent proteolysis of alpha-spectrin, tau, and p35 were observed in retina after ocular hypertension. The results suggested that increased calcium and subsequent proteolysis by activated calpains was associated with the death of inner retinal cells due to acute ocular hypertension in the rat model. Calpain inhibitors may be candidate drugs for treatment of retinal degeneration and dysfunction resulting from glaucoma.

    Topics: Acute Disease; Animals; Apoptosis; Calcium; Calcium Signaling; Calpain; Cyclin-Dependent Kinase 5; Disease Models, Animal; Electroretinography; In Situ Nick-End Labeling; Male; Nerve Tissue Proteins; Neurons; Ocular Hypertension; Peptide Hydrolases; Phosphorylation; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Spectrin; tau Proteins

2006
Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester.
    Neuroscience, 2006, Sep-15, Volume: 141, Issue:4

    Our recent study suggested involvement of calpain-induced proteolysis in retinal degeneration and dysfunction in acute ocular hypertensive rats. The purpose of the present study was to determine if an orally available form of calpain inhibitor, ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), ameliorated retinal degeneration induced by acute hypertension in rats. To help extrapolate the effect of SNJ-1945 from the rat model to the human glaucomatous patient, in vitro inhibition of calpain-induced proteolysis by SNJ-1945 in monkey and human retinal proteins was compared with proteolysis in rat proteins.. Intraocular pressure (IOP) in rats was elevated to 110 mm Hg for 50 min. SNJ-1945 was administrated i.p. or orally before ocular hypertension. Retinal degeneration was evaluated by hematoxylin and eosin (H&E) staining and cell counting. Transcripts for calpains and calpastatin in rat, monkey, and human retinas were measured by quantitative RT-PCR. Calpain activities were determined by casein zymography. Soluble retinal proteins from rat, monkey, and humans were incubated with calcium to activate calpains, with or without SNJ-1945. Proteolysis of calpain substrate alpha-spectrin was analyzed by immunoblotting.. Elevated IOP caused retinal degeneration and proteolysis of alpha-spectrin. Both i.p. and oral administration of SNJ-1945 inhibited proteolysis of alpha-spectrin and ameliorated retinal degeneration. Transcript levels for calpain 1 and calpastatin were similar in rat, monkey, and human retinas. Calpain 2 transcript levels were higher in rats compared with monkey and human. Appreciable caseinolytic activities due to calpains were observed in monkey and human retinas. Incubation of retinal soluble proteins with calcium led to proteolysis of alpha-spectrin due to calpains in rat, monkey, and human samples. SNJ-1945 similarly inhibited proteolysis in all species.. Our results suggested that orally available calpain inhibitor SNJ-1945 might be a possible candidate drug for testing in preventing progression of glaucomatous retinal degeneration.

    Topics: Animals; Calcium-Binding Proteins; Calpain; Carbamates; Disease Models, Animal; Drug Administration Routes; Glycoproteins; Haplorhini; Humans; Intraocular Pressure; Ocular Hypertension; Rats; Rats, Sprague-Dawley; Retinal Degeneration; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Staining and Labeling; Time Factors

2006