calpain and Neuralgia

calpain has been researched along with Neuralgia* in 6 studies

Reviews

1 review(s) available for calpain and Neuralgia

ArticleYear
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain.
    Pharmacology & therapeutics, 2021, Volume: 220

    Topics: Analgesia; Analgesics; Animals; Calpain; Capsaicin; Chronic Pain; Mice; Neuralgia; TRPV Cation Channels

2021

Other Studies

5 other study(ies) available for calpain and Neuralgia

ArticleYear
Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury.
    Journal of neurochemistry, 2018, Volume: 145, Issue:2

    Previous work from our laboratory showed that motor nerve injury by lumbar 5 ventral root transection (L5-VRT) led to interleukin-6 (IL-6) over-expression in bilateral spinal cord, and that intrathecal administration of IL-6 neutralizing antibody delayed the induction of mechanical allodynia in bilateral hind paws. However, early events and upstream mechanisms underlying spinal IL-6 expression following L5-VRT require elucidation. The model of L5-VRT was used to induce neuropathic pain, which was assessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Calpain-2 (CALP2, a calcium-dependent protease) knockdown or over-expression and microglia depletion were conducted intrathecally. Western blots and immunohistochemistry were performed to explore the possible mechanisms. Here, we provide the first evidence that both IL-6 and CALP2 levels are increased in lumbar spinal cord within 30 min following L5-VRT. IL-6 and CALP2 co-localized in both spinal dorsal horn (SDH) and spinal ventral horn. Post-operative (PO) increase in CALP2 in ipsilateral SDH was evident at 10 min PO, preceding increased IL-6 at 20 min PO. Knockdown of spinal CALP2 by intrathecal CALP2-shRNA administration prevented VRT-induced IL-6 overproduction in ipsilateral spinal cord and alleviated bilateral mechanical allodynia. Spinal microglia activation also played a role in early IL-6 up-regulation. Macrophage/microglia markers ED1/Iba1 were increased at 30 min PO, while glial fibrillary acidic protein (astrocyte) and CNPase (oligodendrocyte) markers were not. Increased Iba1 was detected as early as 20 min PO and peaked at 3 days. Morphology changed from a small soma with fine processes in resting cells to an activated ameboid shape. Depletion of microglia using Mac-1-saporin partially prevented IL-6 up-regulation and attenuated VRT-induced bilateral mechanical allodynia. Taken together, our findings provide evidence that increased spinal cord CALP2 and microglia cell activation may have early causative roles in IL-6 over-expression following motor nerve injury. Agents that inhibit CALP2 and/or microglia activation may therefore prove valuable for treating neuropathic pain.

    Topics: Animals; Axotomy; Calpain; Hyperalgesia; Interleukin-6; Male; Microglia; Motor Neurons; Neuralgia; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Nerve Roots; Up-Regulation

2018
Calpain-2 Regulates TNF-α Expression Associated with Neuropathic Pain Following Motor Nerve Injury.
    Neuroscience, 2018, 04-15, Volume: 376

    Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems' approach based perspective for treating neuropathic pain.

    Topics: Animals; Calpain; Disease Models, Animal; Functional Laterality; Ganglia, Spinal; Gene Expression Regulation; Hyperalgesia; Lumbar Vertebrae; Male; Neuralgia; Pain Threshold; Rats, Sprague-Dawley; Spinal Cord; Spinal Nerve Roots; Touch; Tumor Necrosis Factor-alpha

2018
Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons.
    Brain, behavior, and immunity, 2015, Volume: 44

    Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.

    Topics: Animals; Calpain; Ganglia, Spinal; Hyperalgesia; Interleukin-6; Male; Neuralgia; Neurons; Rats; Rats, Sprague-Dawley; Spectrin; Spinal Nerve Roots; Up-Regulation

2015
The glial-neuronal GRK2 pathway participates in the development of trigeminal neuropathic pain in rats.
    The journal of pain, 2014, Volume: 15, Issue:3

    This study examined the role of the glial-neuronal G protein-coupled receptor kinase 2 (GRK2) pathway in the development of trigeminal neuropathic pain. Male Sprague Dawley rats, weighing 220 to 240 g, were anesthetized with ketamine (0.2 g/kg) and xylazine (0.02 g/kg). Under anesthesia, the left lower second molar was extracted, followed by the placement of a mini-dental implant to intentionally injure the inferior alveolar nerve. This injury produced mechanical allodynia along with the downregulation of neuronal GRK2 expression in the medullary dorsal horn. On the other hand, early intracisternal treatment with MDL28170, a calpain inhibitor, produced prolonged antiallodynic effects and blocked this downregulation of neuronal GRK2 expression. The intracisternal infusion of minocycline, a microglia inhibitor, and l-α-aminoadipic acid, an astrocytic specific inhibitor, also blocked the induced mechanical allodynia and downregulated neuronal GRK2 expression, respectively. Double immunofluorescence showed that the interleukin (IL)-1β and IL-1R signals colocalize with the astrocytes and neurons, respectively, in the medullary dorsal horn following an inferior alveolar nerve injury. In addition, the intracisternal infusion of an IL-1 receptor antagonist also produced antiallodynic effects and blocked the downregulation of neuronal GRK2 expression. These results suggest that the glial-neuronal GRK2 pathway is a potentially important new target for treating neuropathic pain. Moreover, the IL-1β expressed in astrocytes plays a significant role in modulating this pathway.. This study showed that the glial-neuronal GRK2 pathway participates in the development of trigeminal neuropathic pain in rats. These results suggest that the glial-neuronal GRK2 pathway is a potentially important new target for the treatment of neuropathic pain.

    Topics: Afferent Pathways; Animals; Astrocytes; Calpain; Down-Regulation; G-Protein-Coupled Receptor Kinase 2; Hyperalgesia; Interleukin-1beta; Male; Medulla Oblongata; Microglia; Neuralgia; Neurons; Pain Threshold; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Interleukin-1; Trigeminal Neuralgia

2014
N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain.
    The Journal of biological chemistry, 2012, Sep-28, Volume: 287, Issue:40

    Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (E(glycine)) in spinal dorsal horn neurons. Blocking glutamate N-methyl-D-aspartate (NMDA) receptors normalizes synaptic inhibition, E(glycine), and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing E(glycine). Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain.

    Topics: Animals; Biological Transport; Calpain; Chlorides; Electrophysiology; Glutamic Acid; Homeostasis; K Cl- Cotransporters; Male; Neuralgia; Neuronal Plasticity; Pain; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; RNA, Small Interfering; Symporters; Synapses

2012