calpain and Multiple-Myeloma

calpain has been researched along with Multiple-Myeloma* in 4 studies

Other Studies

4 other study(ies) available for calpain and Multiple-Myeloma

ArticleYear
Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo.
    Cancer chemotherapy and pharmacology, 2013, Volume: 71, Issue:6

    Bortezomib, a first-generation proteasome inhibitor, induces an endoplasmic reticulum (ER) stress response, which ultimately leads to dysregulation of intracellular Ca(2+) and apoptotic cell death. This study investigated the role of the Ca(2+)-dependent enzyme, calpain, in bortezomib cytotoxicity. A novel therapeutic combination was evaluated in which HIV protease inhibitors were used to block calpain activity and enhance bortezomib cytotoxicity in myeloma cells in vitro and in vivo.. Bortezomib-mediated cell death was examined using assays for apoptosis (Annexin V staining), total cell death (trypan blue exclusion), and growth inhibition (MTT). The effects of calpain on bortezomib-induced cytotoxicity were investigated using siRNA knockdown or pharmaceutical inhibitors. Enzyme activity assays and immunofluorescence analysis were used to identify mechanistic effects.. Inhibition of the Ca(2+)-dependent cysteine protease calpain, either by pharmacologic or genetic means, enhances or accelerates bortezomib-induced myeloma cell death. The increase in cell death is not associated with an increase in caspase activity, nor is there evidence of greater inhibition of proteasome activity, suggesting an alternate, calpain-regulated mechanism of bortezomib-induced cell death. Bortezomib initiates an autophagic response in myeloma cells associated with cell survival. Inhibition of calpain subverts the cytoprotective function of autophagy leading to increased bortezomib-mediated cell death. Combination therapy with bortezomib and the calpain-blocking HIV protease inhibitor, nelfinavir, reversed bortezomib resistance and induced near-complete tumor regressions in an SCID mouse xenograft model of myeloma.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Boronic Acids; Bortezomib; Calpain; Cell Line, Tumor; Cell Survival; Drug Synergism; HIV Protease Inhibitors; Humans; Mice; Mice, SCID; Multiple Myeloma; Nelfinavir; Pyrazines; RNA, Small Interfering; Xenograft Model Antitumor Assays

2013
Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation.
    The Journal of biological chemistry, 2010, May-21, Volume: 285, Issue:21

    The proteasome, a key component of the ubiquitin-proteasome pathway, has emerged as an important cancer therapeutic target. PS-341 (also called Bortezomib or Velcade) is the first proteasome inhibitor approved for newly diagnosed and relapsed multiple myeloma and is currently being tested in many clinical trials against other types of cancers. One proposed mechanism by which PS-341 exerts its anticancer effect is inactivation of nuclear factor-kappaB (NF-kappaB) through prevention of IkappaB(alpha) degradation. In this study, we show that PS-341 at concentrations that effectively inhibited the growth of human cancer cells, instead of increasing IkappaB(alpha) stability, paradoxically induced IkappaB(alpha) degradation. As a result, PS-341 facilitated p65 nuclear translocation and increased NF-kappaB activity. Moreover, IkappaB(alpha) degradation by PS-341 occurred early before induction of apoptosis and could not be inhibited by a pan-caspase inhibitor or caspase-8 silencing; however, it could be prevented with calpain inhibitors, calcium-chelating agents, calpain knockdown, or calpastatin overexpression. In agreement, PS-341 increased calpain activity. These data together indicate that PS-341 induces a calpain-mediated IkappaB(alpha) degradation independent of caspases. In the presence of a calpain inhibitor, the apoptosis-inducing activity of PS-341 was dramatically enhanced. Collectively, these unexpected findings suggest not only a novel paradigm regarding the relationship between proteasome inhibition and NF-kappaB activity but also a strategy to enhance the anticancer efficacy of PS-341.

    Topics: Active Transport, Cell Nucleus; Apoptosis; Boronic Acids; Bortezomib; Calpain; Caspase 8; Cell Line, Tumor; Cell Nucleus; Humans; I-kappa B Proteins; Multiple Myeloma; NF-KappaB Inhibitor alpha; Protease Inhibitors; Pyrazines; Transcription Factor RelA

2010
Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma.
    Neoplasia (New York, N.Y.), 2005, Volume: 7, Issue:7

    In this study, we have evaluated the cytotoxic effect of combining two HDAC inhibitors, SAHA and TSA, with TRAIL in human multiple myeloma cell lines. Low doses of SAHA or TSA enhanced the cytotoxic and apoptotic effects of TRAIL and upregulated the surface expression of TRAIL death receptors (DR4 and/or DR5). SAHA and TSA induced G1 phase cell cycle growth arrest by upregulating p21(WAF1) and p27(Kip1) expression and by inhibiting E2F transcriptional activity. The enhanced TRAIL effect after pretreatment with HDAC inhibitors was consistent with the upregulation of the proapoptotic Bcl-2 family members (Bim, Bak, Bax, Noxa, and PUMA), the downregulation of the anti-apoptotic members of the Bcl-2 family (Bcl-2 and Bcl-X(L)), and IAPs. SAHA and TSA dissipated the mitochondrial membrane potential and enhanced the release of Omi/HtrA2 and AIF from the mitochondria to the cytosol. The cytotoxic effect of both SAHA and TSA was caspase- and calpain-independent. Inhibition of NF(kappa)B activation by the proteasome inhibitor, MG132, enhanced the apoptotic effect of TSA. Our study demonstrated the enhancing effects of HDAC inhibitors on apoptosis when combined with TRAIL and, for the first time, emphasized the role of AIF in mediating the cytotoxic effects of HDAC inhibitors.

    Topics: Amino Acid Chloromethyl Ketones; Annexin A5; Apoptosis; Apoptosis Regulatory Proteins; Calpain; Caspases; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p27; DNA-Binding Proteins; Dose-Response Relationship, Drug; Down-Regulation; E2F Transcription Factors; Enzyme Inhibitors; Flow Cytometry; G1 Phase; Gene Expression Regulation, Neoplastic; Histone Deacetylase Inhibitors; Histones; Humans; Immunoblotting; Inhibitory Concentration 50; Leupeptins; Luciferases; Membrane Glycoproteins; Membrane Potentials; Microscopy, Fluorescence; Mitochondria; Multiple Myeloma; NF-kappa B; Phosphorylation; Propidium; Protein Binding; Ribonucleases; Subcellular Fractions; Time Factors; TNF-Related Apoptosis-Inducing Ligand; Transcription Factors; Tumor Necrosis Factor-alpha; Tumor Suppressor Proteins; Up-Regulation

2005
Interferon-alpha-induced apoptosis in U266 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax.
    Oncogene, 2003, Jul-17, Volume: 22, Issue:29

    We have recently reported that the cytokine interferon-alpha (IFNalpha), commonly used in the treatment of cancer, induced a caspase-dependent apoptosis in tumor cell lines. The signaling mechanisms involved have not been defined. Here, we show that both proapoptotic Bcl-2 family members Bak and Bax were activated by IFNalpha, strictly in correlation with the induction of apoptosis. Using double stainings, we demonstrated that Bak was activated prior to cytochrome c (cyt c) release and caspase-3 activation, whereas activated Bax was only found in cells with released cyt c, mitochondrial depolarization, as well as activated caspase-3. Furthermore, IFNalpha-induced activation of Bak, and to a large extent also of Bax, was dependent on caspase activity. With the use of a panel of specific caspase inhibitors we found, however, that none of caspases-1 to -10 were responsible for this activation. Neither was the Ca(2+)-dependent protease calpain nor the stress-activated p38 SAPK pathway significantly involved. Overexpression of Bcl-2 blocked apoptosis induced by IFNalpha totally abolished Bak activation, as well as decreased the amount of activated Bax. We conclude that IFNalpha induces Bak and Bax activation via distinct mechanisms involving an unknown protease, and that their activation is regulated by Bcl-2.

    Topics: Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Burkitt Lymphoma; Calpain; Carrier Proteins; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; Cytochrome c Group; Enzyme Inhibitors; Humans; Interferon-alpha; Membrane Potentials; Membrane Proteins; Mitochondria; Mitogen-Activated Protein Kinases; Multiple Myeloma; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured

2003