calpain has been researched along with Leukemia-Lymphoma--Adult-T-Cell* in 3 studies
3 other study(ies) available for calpain and Leukemia-Lymphoma--Adult-T-Cell
Article | Year |
---|---|
Preapoptotic protease calpain-2 is frequently suppressed in adult T-cell leukemia.
Adult T-cell leukemia (ATL) is one of the most aggressive hematologic malignancies caused by human T-lymphotropic virus type 1 (HTLV-1) infection. The prognosis of ATL is extremely poor; however, effective strategies for diagnosis and treatment have not been established. To identify novel therapeutic targets and diagnostic markers for ATL, we employed focused proteomic profiling of the CD4(+)CD25(+)CCR4(+) T-cell subpopulation in which HTLV-1-infected cells were enriched. Comprehensive quantification of 14 064 peptides and subsequent 2-step statistical analysis using 29 cases (6 uninfected controls, 5 asymptomatic carriers, 9 HTLV-1-associated myelopathy/tropical spastic paraparesis patients, 9 ATL patients) identified 91 peptide determinants that statistically classified 4 clinical groups with an accuracy rate of 92.2% by cross-validation test. Among the identified 17 classifier proteins, α-II spectrin was drastically accumulated in infected T cells derived from ATL patients, whereas its digestive protease calpain-2 (CAN2) was significantly downregulated. Further cell cycle analysis and cell growth assay revealed that rescue of CAN2 activity by overexpressing constitutively active CAN2 (Δ(19)CAN2) could induce remarkable cell death on ATL cells accompanied by reduction of α-II spectrin. These results support that proteomic profiling of HTLV-1-infected T cells could provide potential diagnostic biomarkers and an attractive resource of therapeutic targets for ATL. Topics: Adult; Apoptosis; Biomarkers; Calpain; CD4-Positive T-Lymphocytes; Cell Cycle; Cell Line; Cell Survival; Disease Progression; HTLV-I Infections; Human T-lymphotropic virus 1; Humans; Immunophenotyping; Leukemia-Lymphoma, Adult T-Cell; Proteomics; RNA, Small Interfering; Spectrin | 2013 |
Decreased susceptibility to calpains of v-FosFBR but not of v-FosFBJ or v-JunASV17 retroviral proteins compared with their cellular counterparts.
The c-Fos and c-Jun transcription factors are rapidly turned over in vivo. One of the multiple pathways responsible for their breakdown is probably initiated by calpains, which are cytoplasmic calcium-dependent cysteine proteases. The c-fos gene has been transduced by two murine oncogenic retroviruses called Finkel-Biskis-Jenkins murine sarcoma virus (FBJ-MSV) and Finkel-Biskis-Reilly murine sarcoma virus (FBR-MSV); c-jun has been transduced by the chicken avian sarcoma virus 17 (ASV17) retrovirus. Using an in vitro degradation assay, we show that the mutated v-FosFBR, but not v-FosFBJ or v-JunASV17, is resistant to calpains. This property raises the interesting possibility that decreased sensitivity to calpains might contribute to the tumorigenic potential of FBR-MSV by allowing greater accumulation of the protein that it encodes in infected cells. It has also been demonstrated that resistance to cleavage by calpains does not result from mutations that have accumulated in the Fos moiety of the viral protein but rather from the addition of atypical peptide motifs at its both ends. This observation raises the interesting possibility that homologous regions in viral and cellular Fos either display slightly different conformations or are differentially accessible to interacting proteins. Topics: Avian Sarcoma Viruses; Burkitt Lymphoma; Calcium; Calpain; Genes, fos; Genes, jun; Humans; Leukemia-Lymphoma, Adult T-Cell; Mutagenesis, Site-Directed; Neoplasm Proteins; Oncogene Protein p65(gag-jun); Oncogene Proteins v-fos; Proto-Oncogene Proteins c-fos; Proto-Oncogene Proteins c-jun; Sarcoma Viruses, Murine; Sequence Deletion; Substrate Specificity; Tumor Cells, Cultured | 1997 |
Calpain secreted by activated human lymphoid cells degrades myelin.
Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination. Topics: Animals; Antibodies, Monoclonal; Calcimycin; Calcium; Calcium-Binding Proteins; Calpain; Chelating Agents; Culture Media, Conditioned; Demyelinating Diseases; Egtazic Acid; Humans; Leukemia-Lymphoma, Adult T-Cell; Lymphoma, Large B-Cell, Diffuse; Monocytes; Myelin Basic Protein; Myelin Sheath; Neoplasm Proteins; Protease Inhibitors; Rabbits; Rats; T-Lymphocytes; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured | 1995 |