calpain has been researched along with Kidney-Diseases* in 7 studies
1 review(s) available for calpain and Kidney-Diseases
Article | Year |
---|---|
Calcium-mediated proximal tubular injury-what is the role of cysteine proteases?
Topics: Animals; Calcium; Calpain; Caspases; Cysteine Endopeptidases; Hypoxia; Ischemia; Kidney Diseases; Kidney Tubules | 2000 |
6 other study(ies) available for calpain and Kidney-Diseases
Article | Year |
---|---|
GSPE is superior to NAC in the prevention of contrast-induced nephropathy: might this superiority be related to caspase 1 and calpain 1?
Our study was intended to evaluate the role of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), caspases 1 and 3 and calpain 1 in the pathogenesis of contrast-induced nephropathy (CIN) and to compare the protective effects of N acetyl cysteine (NAC) and grape seed proanthocyanidin extract (GSPE) against the development of CIN.. 32 rats were divided into four groups; control, contrast media (CM), CM+NAC and CM+GSPE. CIN was induced by administration of 7 ml/kg diatrizoate. The experiment was discontinued on the ninth day. Blood was collected for blood urea nitrogen (BUN) and creatinine measurement. Rat kidney tissues were removed for histopathological evaluation and the investigation of caspases 1 and 3, iNOS, eNOS, TUNEL and calpain 1.. A significant increase in BUN, creatinine, renal histopathological injury, TUNEL, caspases 1, 3, calpain 1, iNOS and eNOS was observed in the CM group compared to the control group. There was amelioration in all these parameters in the CM+GSPE group, while there was no significant amelioration in BUN, creatinine and renal histopathological injury in the CM+NAC group. In addition, calpain 1 staining and creatinine were significantly lower in the CM+GSPE group compared to the CM+NAC group.. Our study showed, for the first time in the literature, that GSPE has a greater renoprotective effect compared with NAC and that this effective protection may be related to decrease in calpain 1 levels. Topics: Acetylcysteine; Animals; Calpain; Caspase 1; Contrast Media; Grape Seed Extract; Kidney Diseases; Male; Proanthocyanidins; Rats; Rats, Sprague-Dawley | 2014 |
How does colistin-induced nephropathy develop and can it be treated?
Colistin is an old antibiotic used in the treatment of Gram-negative infections. It was once suspended because of its nephrotoxic effect but has since been reintroduced due to multidrug-resistant bacterial infections. The pathogenesis of colistin-associated nephropathy has not been clarified, and there is currently no effective therapeutic or prophylactic agent available. The aim of this study was to investigate the roles of caspase-associated apoptosis and caspase 1, calpain 1, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) expression in the pathogenesis of colistin-associated nephrotoxicity and the effect of grape seed proanthocyanidin extract (GSPE) in preventing it. Twenty-four rats were divided into three groups: control, colistin, and colistin plus GSPE (colistin+GSPE). Colistin-associated nephropathy was induced by the administration of 300,000 IU/kg of body weight/day colistin intraperitoneally for 7 days. The experiment was discontinued on the seventh day. Blood was collected for measurements of blood urea nitrogen (BUN) and creatinine levels. Histopathological examination of kidney tissue and caspase 1 and 3, iNOS, eNOS, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL), and calpain 1 staining was also performed. Significant increases in BUN levels; creatinine levels; renal histopathological scores; and TUNEL, caspase 1 and 3, calpain 1, iNOS, and eNOS staining were observed for the colistin group compared to the control group. Significant decreases in BUN levels; creatinine levels; renal histopathological scores; and TUNEL, caspase 1 and 3, calpain 1, iNOS, and eNOS staining were observed in the colistin+GSPE group compared to the colistin group. Our study shows, for the first time in the literature, that caspase-mediated apoptosis, iNOS, caspase 1, and calpain 1 are involved in the pathogenesis of colistin-associated nephropathy. GSPE had a renoprotective effect, as shown by the lowered levels of these mediators. Topics: Animals; Apoptosis; Blood Urea Nitrogen; Calpain; Caspases; Colistin; Gene Expression Regulation, Enzymologic; Grape Seed Extract; In Situ Nick-End Labeling; Kidney; Kidney Diseases; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Phytotherapy; Proanthocyanidins; Rats; Rats, Sprague-Dawley; Vitis | 2013 |
Nicotinic acetylcholine receptor α1 promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy.
The nicotinic acetylcholine receptor α1 (nAChRα1) was investigated as a potential proinflammatory molecule in the kidney, given a recent report that it is an alternative urokinase plasminogen activator (uPA) receptor, in addition to the classical receptor uPAR. Two animal models and in vitro monocyte studies were involved: (1) In an ApoE(-/-) mouse model of chronic kidney disease, glomerular-resident cells and monocytes/macrophages were identified as the primary cell types that express nAChRα1 during hypercholesterolemia/uninephrectomy-induced nephropathy. Silencing of the nAChRα1 gene for 4 months (6 months on Western diet) prevented the increases in renal monocyte chemoattractant protein-1 and osteopontin expression levels and F4/80+ macrophage infiltration compared with the nonsilenced mice. These changes were associated with significantly reduced transforming growth factor-β1 mRNA (50% decrease) and α smooth muscle actin-positive (αSMA+) myofibroblasts (90% decrease), better glomerular and tubular basement membranes (GBM/TBM) preservation (threefold less disintegration), and better renal function preservation (serum creatinine 40% lower) in the nAChRα1-silenced mice. The nAChRα1 silencing was also associated with significantly reduced renal tissue calcium deposition (78% decrease) and calpain-1 (but not calpain-2) activation (70% decrease). (2) The nAChRα1 was expressed in vitro by mouse monocyte cell line WEHI-274.1. The silencing of nAChRα1 significantly reduced both calpain-1 and -2 activities, and reduced the degradation of the calpain substrate talin. (3) To further explore the role of calpain-1 activity in hypercholesterolemic nephropathy, disease severities were compared in CAST(-/-)ApoE(-/-) (calpain overactive) mice and ApoE(-/-) mice fed with Western diet for 10 months (n=12). Macrophages were the main cell type of renal calpain-1 production in the model. The number of renal F4/80+ macrophages was 10-fold higher in the CAST(-/-)ApoE(-/-) mice (P<0.05), and was associated with a significantly higher level of αSMA+ cells, increased GBM/TBM destruction, and higher serum creatinine levels. Our studies suggest that the receptor nAChRα1 is an important regulator of calpain-1 activation and inflammation in the chronic hypercholesterolemic nephropathy. This new proinflammatory pathway may also be relevant to other disorders beyond hyperlipidemic nephropathy. Topics: Actins; Animals; Antigens, Differentiation; Apolipoproteins E; Blotting, Northern; Blotting, Western; Calcium-Binding Proteins; Calpain; Cell Line; Female; Hypercholesterolemia; Inflammation; Kidney; Kidney Diseases; Macrophages; Male; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Monocytes; Nephrectomy; Receptors, Nicotinic; RNA Interference; Transforming Growth Factor beta1 | 2011 |
The endogenous modulators of Ca2+-Mg2+-dependent ATPase in children with chronic kidney disease (CKD).
Calcium homeostasis is disturbed in many ways in the course of chronic kidney disease (CKD). The concentration of free cytoplasmic calcium in erythrocytes is increased. Maintenance of a high concentration gradient (between the cystoplasmic and extracellular space) is possible only due to a finely tuned cooperation between many regulating systems in the cytoplasmic membranes and cell organelles. The aim of our study was to evaluate the activity of Ca(2+)-Mg(2+)-dependent ATPase (PMCA), calmodulin and calpain-calpastatin (CANP-CAST) system in erythrocytes of CKD children treated conservatively in the stages II-IV.. A total of 36 patients with CKD were enrolled in the study. Group A contained patients with CKD stage II; group B with CKD stage III; and group C with CKD stage IV. The control group D consisted of 30 healthy subjects. In the serum, we determined the following: intact parathormon, total calcium, creatinine; in the red blood cells: free cytosolic calcium concentration (Ca(i)(2+)), activity of Ca(2+)-Mg(2+)-transporting ATPase (PMCA), basal PMCA (bPMCA), calmodulin (CALM), CANP, CAST.. In all groups, Ca(i)(2+) concentrations were significantly higher, whereas PMCA and bPMCA activity were lower than in the controls. CANP concentrations in group A were elevated compared to the controls, whereas in groups B and C they were significantly lower. In group C, the mean CAST activity reached the highest values. CALM concentrations were decreased versus controls in all groups of patients.. The intracellular Ca(i)(2+) homeostasis is disturbed in children with CKD and aggravates the deterioration of renal function as well. The reasons for the progressing increase of erythrocyte calcium concentration are multifactorial. Undoubtedly, the decreased PMCA activity, the calmodulin deficiency and the dysregulated CANP-CAST system are responsible for that phenomenon. The impact of many other biological modulators, creating a network defending the cell against the calcium accumulation, cannot be excluded. Topics: Adolescent; Ca(2+) Mg(2+)-ATPase; Calcium-Binding Proteins; Calmodulin; Calpain; Child; Chronic Disease; Erythrocytes; Humans; Kidney Diseases | 2010 |
Changes in beta(1) integrin in renal tubular epithelial cells after intrauterine asphyxia of rabbit pups.
We investigated the role of beta(1) integrin in acute renal tubular injury caused by intrauterine asphyxia of neonatal rabbits by exploring the distribution and expression changes in beta(1) integrin and its mRNA in renal tubular epithelial cells.. A catheter was used to temporarily block the abdominal aortas of New Zealand pregnant rabbits in order to set up the intrauterine asphyxia animal model. The rabbit pups were randomly divided into control, asphyxia, and calpain inhibitor intervention groups and their renal tubular tissues were examined at 2 h after asphyxia. Immunofluorescence and in situ hybridization were used to examine the expression of beta(1) integrin and its mRNA, respectively. Western blot analysis was used to show the proteolysis of beta(1) integrin. Calpain inhibitor I was used to show the protective effect of keeping beta(1) integrin from being hydrolyzed after asphyxia.. (1) Normally, beta(1) integrin was located exclusively at the basal surface of renal tubular epithelial cells. After asphyxia a large amount of beta(1) integrin shifted from the basal surface to the cytoplasma and the lateral and apical surfaces and its expression decreased significantly, with simultaneous damage to renal tubular integrity and structure, many exfoliated cells and cell fragments obstructed the tubular lumen. (2) The mRNA of beta(1) integrin was mainly expressed in the cytoplasma. After asphyxia its expression increased significantly. (3) Proteolysis of beta(1) integrin was evident after asphyxia, but was significantly reduced in the calpain inhibitor intervention group. Calpain inhibitor I prevented the decrease and dislocation of beta(1) integrin and protected renal tubular integrity and structure.. Intrauterine asphyxia caused proteolysis of beta(1) integrin, with reduced expression and depolarized distribution, leading to tubular lumen obstruction and renal tubule destruction. Damage to beta(1) integrin and the renal tubule was related to the activation of calpain, and calpain inhibitor curtailed these effects. Topics: Animals; Animals, Newborn; Calpain; Epithelial Cells; Female; Fetal Hypoxia; Integrin beta1; Kidney Diseases; Kidney Tubules; Pregnancy; Rabbits; RNA, Messenger | 2009 |
Down-regulation of calpain 9 is linked to hypertensive heart and kidney disease.
Calpains are a family of 14 intracellular calcium-dependent proteases, which have been implicated in cardiovascular diseases. We aimed to analyze specifically the expressional regulation of the different calpain isoforms in hypertensive target organ damage. Using real-time PCR, we found calpain 6 and 9 down-regulated by more than 50% and the endogenous calpain inhibitor calpastatin up-regulated by 225%, respectively, in the hearts of Dahl salt-sensitive rats on a high salt (4% NaCl) compared to normal salt diet. On the protein level, calpain 9 but not calpastatin was regulated in the hypertensive target organs heart and kidney. Moreover, the myocardial expression of calpain 9 protein was inversely linked to left ventricular mass (r= -0.93, p<0.01), and renal expression of calpain 9 protein correlated inversely with albuminuria (r= -0.82, p<0.05). In the aorta, there was no regulation of calpain 9 on the protein level. We conclude that differential regulation of calpain 9 may play a role in hypertensive target organ damage. Topics: Animals; Calcium-Binding Proteins; Calpain; Down-Regulation; Gene Expression Regulation, Enzymologic; Heart Diseases; Heart Ventricles; Hypertension; Isoenzymes; Kidney Diseases; Male; Rats; Rats, Inbred Dahl; RNA, Messenger | 2005 |