calpain has been researched along with Inflammatory-Breast-Neoplasms* in 3 studies
3 other study(ies) available for calpain and Inflammatory-Breast-Neoplasms
Article | Year |
---|---|
Geometric tumor embolic budding characterizes inflammatory breast cancer.
Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery.. This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli.. In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding.. Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and β-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC. Topics: Animals; Breast Neoplasms; Cadherins; Calpain; Female; Humans; Inflammatory Breast Neoplasms; Neoplastic Cells, Circulating; Spheroids, Cellular | 2023 |
The calpain system is associated with survival of breast cancer patients with large but operable inflammatory and non-inflammatory tumours treated with neoadjuvant chemotherapy.
The calpains are a family of intracellular cysteine proteases that function in a variety of important cellular functions, including cell signalling, motility, apoptosis and survival. In early invasive breast cancer expression of calpain-1, calpain-2 and their inhibitor, calpastatin, have been associated with clinical outcome and clinicopathological factors.The expression of calpain-1, calpain-2 and calpastatin was determined using immunohistochemistry on core biopsy samples, in a cohort of large but operable inflammatory and non-inflammatory primary breast cancer patients treated with neoadjuvant chemotherapy. Information on treatment and prognostic variables together with long-term clinical follow-up was available for these patients. Diagnostic pre-chemotherapy core biopsy samples and surgically excised specimens were available for analysis.Expression of calpastatin, calpain-1 or calpain-2 in the core biopsies was not associated with breast cancer specific survival in the total patient cohort; however, in patients with non-inflammatory breast cancer, high calpastatin expression was significantly associated with adverse breast cancer-specific survival (P=0.035), as was low calpain-2 expression (P=0.031). Low calpastatin expression was significantly associated with adverse breast cancer-specific survival of the inflammatory breast cancer patients (P=0.020), as was low calpain-1 expression (P=0.003).In conclusion, high calpain-2 and low calpastatin expression is associated with improved breast cancer-specific survival in non-inflammatory large but operable primary breast cancer treated with neoadjuvant chemotherapy. In inflammatory cases, high calpain-1 and high calpastatin expression is associated with improved breast cancer-specific survival. Determining the expression of these proteins may be of clinical relevance. Further validation, in multi-centre cohorts of breast cancer patients treated with neoadjuvant chemotherapy, is warranted. Topics: Adult; Aged; Aged, 80 and over; Breast Neoplasms; Calcium-Binding Proteins; Calpain; Female; Humans; Immunohistochemistry; Inflammatory Breast Neoplasms; Middle Aged; Neoadjuvant Therapy; Prognosis; Survival Analysis; Young Adult | 2016 |
The genesis and unique properties of the lymphovascular tumor embolus are because of calpain-regulated proteolysis of E-cadherin.
The genesis and unique properties of the lymphovascular tumor embolus are poorly understood largely because of the absence of an experimental model that specifically reflects this important step of tumor progression. The lymphovascular tumor embolus is a blastocyst-like structure resistant to chemotherapy, efficient at metastasis and overexpressing E-cadherin (E-cad). Conventional dogma has regarded E-cad as a metastasis-suppressor gene involved in epithelial-mesenchymal transition. However, within the lymphovascular embolus, E-cad and its proteolytic processing by calpain and other proteases have a dominant oncogenic rather than suppressive role in metastasis formation and tumor cell survival. Studies using a human xenograft model of inflammatory breast cancer, MARY-X, demonstrated the equivalence of xenograft-generated spheroids with lymphovascular emboli in vivo with both structures demonstrating E-cad overexpression and specific proteolytic processing. Western blot revealed full-length (FL) E-cad (120 kDa) and four fragments: E-cad/NTF1 (100 kDa), E-cad/NTF2 (95 kDa), E-cad/NTF3 (85 kDa) and E-cad/NTF4 (80 kDa). Compared with MARY-X, only E-cad/NTF1 was present in the spheroids. E-cad/NTF1 was produced by calpain, E-cad/NTF2 by γ-secretase and E-cad/NTF3 by a matrix metalloproteinase (MMP). Spheroidgenesis and lymphovascular emboli formation are the direct result of calpain-mediated cleavage of E-cad and the generation of E-cad/NTF1 from membrane-associated E-cad rather than the de novo presence of either E-cad/NTF1 or E-cad/CTF1. E-cad/NTF1 retained the p120ctn-binding site but lost both the β-catenin and α-binding sites, facilitating its disassembly from traditional cadherin-based adherens junctions and its 360° distribution around the embolus. This calpain-mediated proteolysis of E-cad generates the formation of the lymphovascular embolus and is responsible for its unique properties of increased homotypic adhesion, apoptosis resistance and budding. Topics: Amino Acid Sequence; Animals; Blood Vessels; Cadherins; Calpain; Carcinoma; Cell Adhesion; Cell Line, Tumor; Cell Survival; Embolism; Female; Humans; Inflammatory Breast Neoplasms; Lymphatic Vessels; Models, Biological; Molecular Sequence Data; Neoplasm Metastasis; Neoplasms; Neovascularization, Pathologic; Proteolysis; Transplantation, Heterologous | 2013 |