calpain has been researched along with Glomerulonephritis* in 2 studies
2 other study(ies) available for calpain and Glomerulonephritis
Article | Year |
---|---|
Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization.
Calpains, calcium-activated proteases, mediate the angiogenic signals of vascular endothelial growth factor. However, their involvement in vascular repair has not been investigated and the underlying mechanisms remain to be fully elucidated.. A rapidly progressive form of glomerulonephritis in wild type and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor, was studied. Calpastatin transgene expression prevented the repair of peritubular capillaries and the recovery of renal function, limiting mouse survival. In vitro analysis detected a significant reduction of both intracellular and extracellular calpain activities in transgene expressing cells, whereas Western blotting revealed that proangiogenic factors vascular endothelial growth factor and norepinephrine increased calpain exteriorization. In vitro, extracellular calpains increased endothelial cell proliferation, migration and capillary tube formation. In vivo, delivery of nonpermeable extracellular calpastatin was sufficient to blunt angiogenesis and vascular repair. Endothelial cell response to extracellular calpains was associated with fibronectin cleavage, generating fibronectin fragments with proangiogenic capacity. In vivo, fibronectin cleavage was limited in the kidney of calpastatin transgenic mice with nephritis.. This study demonstrates that externalized calpains participate in angiogenesis and vascular repair, partly by promoting fibronectin cleavage and thereby amplifying vascular endothelial growth factor efficiency. Thus, manipulation of calpain externalization may have therapeutic implications to control angiogenesis. Topics: Animals; Blood Vessels; Calpain; Cell Movement; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Disease Progression; Endothelium, Vascular; Fibronectins; Glomerulonephritis; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neovascularization, Physiologic | 2012 |
Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice.
Glomerular injury and albuminuria in acute glomerulonephritis are related to the severity of inflammatory process. Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory process. Therefore, for determination of the role of calpain in the pathophysiology of acute glomerulonephritis, transgenic mice that constitutively express high levels of calpastatin, a calpain-specific inhibitor protein, were generated. Wild-type mice that were subjected to anti-glomerular basement membrane nephritis exhibited elevated levels of calpain activity in kidney cortex at the heterologous phase of the disease. This was associated with the appearance in urine of calpain activity, which originated potentially from inflammatory cells, abnormal transglomerular passage of plasma proteins, and tubular secretion. In comparison with nephritic wild-type mice, nephritic calpastatin-transgenic mice exhibited limited activation of calpain in kidney cortex and limited secretion of calpain activity in urine. This was associated with less severe glomerular injury (including capillary thrombi and neutrophil activity) and proteinuria. There was a reduction in NF-kappaB activation, suggesting that calpain may participate in inflammatory lesions through NF-kappaB activation. There also was a reduction in nephrin disappearance from the surface of podocytes, indicating that calpain activity would enhance proteinuria by affecting nephrin expression. Exposure of cultured podocytes to calpain decreased nephrin expression, and, conversely, exposure of these cells to calpastatin prevented TNF-alpha from decreasing nephrin expression, demonstrating a role for the secreted form of calpain. Thus, both activation and secretion of calpains participate in the development of immune glomerular injury. Topics: Albuminuria; Animals; Anti-Glomerular Basement Membrane Disease; Calcium-Binding Proteins; Calpain; Cysteine Proteinase Inhibitors; Disease Models, Animal; Female; Glomerulonephritis; Inflammation; Kidney; Mice; Mice, Inbred C57BL; Mice, Transgenic; NF-kappa B | 2006 |