calpain and Epilepsy

calpain has been researched along with Epilepsy* in 13 studies

Reviews

1 review(s) available for calpain and Epilepsy

ArticleYear
Mechanisms of action, physiological effects, and complications of hypothermia.
    Critical care medicine, 2009, Volume: 37, Issue:7 Suppl

    Mild to moderate hypothermia (32-35 degrees C) is the first treatment with proven efficacy for postischemic neurological injury. In recent years important insights have been gained into the mechanisms underlying hypothermia's protective effects; in addition, physiological and pathophysiological changes associated with cooling have become better understood.. To discuss hypothermia's mechanisms of action, to review (patho)physiological changes associated with cooling, and to discuss potential side effects.. Review article.. None.. A myriad of destructive processes unfold in injured tissue following ischemia-reperfusion. These include excitotoxicty, neuroinflammation, apoptosis, free radical production, seizure activity, blood-brain barrier disruption, blood vessel leakage, cerebral thermopooling, and numerous others. The severity of this destructive cascade determines whether injured cells will survive or die. Hypothermia can inhibit or mitigate all of these mechanisms, while stimulating protective systems such as early gene activation. Hypothermia is also effective in mitigating intracranial hypertension and reducing brain edema. Side effects include immunosuppression with increased infection risk, cold diuresis and hypovolemia, electrolyte disorders, insulin resistance, impaired drug clearance, and mild coagulopathy. Targeted interventions are required to effectively manage these side effects. Hypothermia does not decrease myocardial contractility or induce hypotension if hypovolemia is corrected, and preliminary evidence suggests that it can be safely used in patients with cardiac shock. Cardiac output will decrease due to hypothermia-induced bradycardia, but given that metabolic rate also decreases the balance between supply and demand, is usually maintained or improved. In contrast to deep hypothermia (

    Topics: Acidosis; Apoptosis; Body Temperature Regulation; Brain Edema; Brain Ischemia; Calpain; Critical Care; Epilepsy; Free Radicals; Genes, Immediate-Early; Humans; Hypothermia, Induced; Infections; Inflammation; Ion Pumps; Mitochondria; Reperfusion Injury; Thrombosis; Thromboxane A2

2009

Other Studies

12 other study(ies) available for calpain and Epilepsy

ArticleYear
Inhibiting SRC activity attenuates kainic-acid induced mouse epilepsy via reducing NR2B phosphorylation and full-length NR2B expression.
    Epilepsy research, 2022, Volume: 185

    To explore the effect of SRC activation on spontaneously recurrent seizures and to investigate the underlying mechanisms of NR2B phosphorylation.. C57BL/6 mice were injected intrahippocampally with kainic acid (KA, 0.4 μg/25 g) to induce status epilepticus (SE). Saracatinib(STB) was used as an SRC inhibitor. Spontaneously recurrent seizures were monitored from day 7 to day 14 after the KA injection. Nissl's stain and NeuN were used to detect neuron loss and Timm stain was used to evaluate mossy fibre sprouting 14 days after KA injection. We also investigated the effect of SRC on full-length expression of NR2B. MDL28170 was used to inhibit calpain activity. Western blotting and qPCR were performed to verify phosphorylation levels and expression of SRC and NR2B 24 h after KA injection.. The duration of status epileptics in the SRC inhibitor group decreased significantly compared to the KA group 24 h after the injection of KA (P < 0.05). The application of the SRC inhibitor significantly reduced the degree of contralateral mossy fibre sprouting (P < 0.05) and improved the degree of neuron loss (P < 0.01) compared to the epilepsy group. Full-length NR2B levels in the ipsilateral hippocampus decreased in the epilepsy group (P < 0.01) compared to the sham group, and it further decreased in the STB inhibitor group (P < 0.01). The effect of the STB inhibitor was counteracted by simultaneous inhibition of SRC activity and calpain activation, while the level of full-length NR2B increased compared to the KA+STB group(P < 0.01). Reduction of NR2B cleavage by MDL28170 significantly increased the duration of epileptic status compared to the KA group (P < 0.05).. Our data indicated that the early application of SRC inhibitors exerted protective effects on seizure severity, loss of neurons, and sprouting of mossy fibres in KA-induced mouse epilepsy. Seizure severity attenuation due to SRC inhibition was associated with the decrease of NR2B in both the phosphorylation and full-length forms.

    Topics: Animals; Calpain; Epilepsy; Epilepsy, Temporal Lobe; Hippocampus; Kainic Acid; Mice; Mice, Inbred C57BL; Phosphorylation; Seizures

2022
Calpain-2 activation in mouse hippocampus plays a critical role in seizure-induced neuropathology.
    Neurobiology of disease, 2021, Volume: 147

    Calpain has been proposed to play a critical role in the development of epilepsy. Here we used conditional calpain-2 knock-out (C2CKO) mice in a C57/Bl6 background and a selective calpain-2 inhibitor to analyze the role of calpain-2 in epilepsy. Neurodegeneration was evident in various hippocampal subfields, in particular in mossy cells in the hilus of the dentate gyrus (DG) in C57/Bl6 mice 7 days after kainic acid (KA)-induced seizures. Calpain-2 activation was still observed in mossy cells 7 days after seizures. Calpain activation, astroglial and microglial activation, neurodegeneration, and cognitive impairment were absent in C2CKO mice and in C57/Bl6 mice treated with a selective calpain-2 inhibitor for 7 days after seizure initiation. Levels of the potassium chloride cotransporter 2 (KCC2) were decreased in mossy cells 7 days after seizures and this decrease was prevented by calpain-2 deletion or selective inhibition. Our results indicate that prolonged calpain-2 activation plays a critical role in neuropathology following seizures. A selective calpain-2 inhibitor could represent a therapeutic treatment for seizure-induced neuropathology.

    Topics: Animals; Calpain; Epilepsy; Hippocampus; Mice; Mice, Inbred C57BL; Mice, Knockout; Seizures

2021
Calpain activation and neuronal death during early epileptogenesis.
    Neurobiology of disease, 2019, Volume: 124

    Epilepsy is a brain disorder characterized by a predisposition to suffer epileptic seizures. Acquired epilepsy might be the result of brain insults like head trauma, stroke, brain infection, or status epilepticus (SE) when one of these triggering injuries starts a transformative process known as epileptogenesis. There is some data to suggest that, during epileptogenesis, seizures themselves damage the brain but there is no conclusive evidence to demonstrate that spontaneous recurrent seizures themselves injure the brain. Our recent evidence indicates that calpain overactivation might be relevant for epileptogenesis. Here, we investigated if spontaneous recurrent seizures that occur during an early period of epileptogenesis show any correlation with the levels of calpain activation and/or expression. In addition, we also investigated a possible association between the occurrence of spontaneous seizures and increased levels of cell death, gliosis and inflammation (typical markers associated with epileptogenesis). We found that the number of spontaneous seizures detected prior to sample collection was correlated with altered calpain activity and expression. Moreover, the levels of hippocampal neurodegeneration were also correlated with seizure occurrence. Our findings suggest that, at least during early epileptogenesis, there is a correlation between seizure occurrence, calpain activity and neurodegeneration. Thus, this study opens the possibility that aberrant calpain reactivation by spontaneous seizures might contribute to the manifestation of future spontaneous seizures.

    Topics: Animals; Calpain; Cell Death; Encephalitis; Epilepsy; Gliosis; Hippocampus; Male; Microglia; Neurons; Rats, Sprague-Dawley; Seizures

2019
[Protective effects of levetiracetam and simvastatin on pilocarpine-induced epilepsy in rat models].
    Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition, 2015, Volume: 46, Issue:2

    TO determine neuroprotective properties of levetiracetam and simvastatin using rats with pilocaroine-induced epilepsy.. Epileptic rat models were randomly divided into 4 groups, each being exposed to saline, simvastatin, levetiracetam, or levetiracetam + simvastatin. Brain tissues of the rats were examined. Nissl staining was used to determine pilocarpine-induced neuronal loss in CA1 and CA3 of hippocampus. Western blot was used to detect calpain-1 expression of hippocampus.. Severe cell death was found 24 h after seizures, with a level significantly higher than the controls. Compared with the saline-treated cells, simvastatin did not decrease severe cell death (P>0.05), but levetiracetam and levetiracetam+simvastatin decreased severe cell death 24 h after seizures (P<0.05). No significant differences were found between those treated with levetiracetam and those with levetiracetam+simvastatin. Compared with controls, overexpressed calpain-1 was found in the rats 24 h after seizures, which indicates that calpain-1 may be involved in the pathophysiological mechanisms of epilepsy. Compared with those treated with pilocarpine + saline, simvastatin, levetiracetam and levetiracetam + simvastatin reduced the level of calpain-1 24 h after seizures (P<0.05).. Levetiracetam, not simvastatin, possesses neuroprotective properties, through changing calpain-1 expression levels. But levetiracetam plus simvastatin treatment does not have advantages over the choice of monotherapy. Simvastain does not possess neuroprotective properties at the early stage of epilepsy.

    Topics: Animals; Calpain; Disease Models, Animal; Epilepsy; Hippocampus; Levetiracetam; Pilocarpine; Piracetam; Rats; Seizures; Simvastatin

2015
The suppression of epileptiform discharges in cultured hippocampal neurons is regulated via alterations in full-length tropomyosin-related kinase type B receptors signalling activity.
    The European journal of neuroscience, 2014, Volume: 40, Issue:3

    Epilepsy is a common neurological disease. Understanding the mechanisms of epileptogenesis at the cellular and molecular levels may provide novel targets for preventing this disorder. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase type B (TrkB) are believed to be critical for epileptogenesis. Previous studies have revealed possible changes in the expression of full-length TrkB receptors (TrkB.FL) and truncated TrkB receptors (TrkB.T) in neurodegenerative disorders. In this study, we investigated alterations in TrkB receptor expression and TrkB signalling activity in a rat hippocampal neuronal model of spontaneous recurrent epileptiform discharges (SREDs) and the effects on the epileptiform discharges. To induce epileptiform discharges, we established a model with Mg(2+) -free treatment. We found a dramatic upregulation of TrkB.T and a decrease in TrkB.FL in the SREDs model. Calpain contributed to the downregulation of TrkB.FL. The upregulation of TrkB.T required transcription and translation activity. Furthermore, BDNF induced the activation of TrkB.FL signalling. However, TrkB.FL signalling was inhibited in the SREDs model. Although calpain inhibitors prevented a decrease in TrkB.FL, they did not restrain the downregulation of TrkB.FL signalling activity in the model. However, a SREDs model with a translation inhibitor prevented the increase in TrkB.T and re-activated TrkB.FL signalling activity. Finally, we used electrophysiology to observe that a downregulation of TrkB.T could relieve the representative epileptiform discharges in the model. These results, taken together, demonstrate that alterations in TrkB.FL signalling may be regulated via TrkB.T receptors. Upregulation of TrkB.FL signalling suppresses epileptiform discharges in the SREDs model.

    Topics: Animals; Brain-Derived Neurotrophic Factor; Calpain; Cells, Cultured; Disease Models, Animal; Down-Regulation; Epilepsy; Female; Hippocampus; Isoenzymes; Male; Neurons; Rats; Rats, Sprague-Dawley; Receptor, trkB; Signal Transduction; Up-Regulation

2014
Overexpression of μ-calpain in the anterior temporal neocortex of patients with intractable epilepsy correlates with clinicopathological characteristics.
    Seizure, 2011, Volume: 20, Issue:5

    This study aims to investigate μ-calpain expression profiles in the anterior temporal neocortex in patients with intractable epilepsy, and to determine whether its pattern of expression is related to pathological changes seen in these patients.. The study subjects consisted of 30 patients with intractable epilepsy and a control group of 10 patients with brain trauma who underwent resection of the anterior temporal lobe. μ-Calpain expression in surgically resected anterior temporal cortices of patients with intractable epilepsy were analyzed using the RT-PCR, Western blot, immunohistochemistry and immunofluorescence staining. GFAP expression was detected by immunohistochemical staining. The related pro-inflammatory cytokines were quantified by elisa. Clinicopathological characteristics were evaluated by HE staining.. Analysis by Western blot and RT-PCR revealed that inactive μ-calpain expression and the calpain-cleaved spectrin fragment in surgically resected anterior temporal cortices of patients with intractable epilepsy were significantly increased compared to the tissues from corresponding regions of the control group. Immunohistological staining demonstrated that μ-calpain was overexpressed in the cell cytoplasm of neurons and glial cells in patients with intractable epilepsy and GFAP was overexpressed in the cell cytoplasm of glial cells in patients with intractable epilepsy. The level of pro-inflammatory cytokines, such as IL-1β, IL-6 and TGF-β1 were significantly increased in patients with intractable epilepsy. HE staining indicated μ-calpain overexpression is an independent prognostic factor for pathological changes such as neuronal loss, neuronal degeneration, gliosis and astrocytosis.. These data suggest that overexpression of μ-calpain is relationship with intractable epilepsy as well as the clinicopathological characteristics in these patients.

    Topics: Adolescent; Adult; Calpain; Epilepsy; Female; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Male; Neocortex; Temporal Lobe; Young Adult

2011
Prevention of epilepsy by taurine treatments in mice experimental model.
    Journal of neuroscience research, 2009, May-01, Volume: 87, Issue:6

    An experimental model based on kainic acid (KA) injections replicates many phenomenological features of human temporal lobe epilepsy, the most common type of epilepsy in adults. Taurine, 2-aminoethanesulfonic acid, present in high concentrations in many invertebrate and vertebrate systems, is believed to serve several important biological functions. In addition, it is believed to have a neuroprotective role against several diseases. In the present study, an experimental mouse model based on taurine pretreatment prior to KA administration has been improved to study whether taurine has a neuroprotective effect against KA-induced behavior and cell damage. Under different treatments tested, taurine's most neuroprotective effects were observed with intraperitoneal taurine injection (150 mg/kg dosage) 12 hr before KA administration. Thus, a reduction in or total absence of seizures, together with a reduction in or even disappearance of cellular and molecular KA-derived effects, was detected in mice pretreated with taurine compared with those treated only with KA. Moreover, the use of tritiated taurine revealed taurine entry into the brain, suggesting possible changes in intracellular:extracellular taurine ratios and the triggering of pathways related to neuroprotective effects.

    Topics: Analysis of Variance; Animals; Anticonvulsants; Brain; Calpain; Cell Death; Chromatography, High Pressure Liquid; Disease Models, Animal; Epilepsy; Immunoblotting; Immunohistochemistry; Injections, Intraperitoneal; Kainic Acid; Male; Mice; Neuroglia; Neuroprotective Agents; Proto-Oncogene Proteins c-fos; Seizures; Taurine

2009
Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.
    Experimental neurology, 2008, Volume: 213, Issue:1

    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation and inhibition that is often observed after injury.

    Topics: Animals; Brain Damage, Chronic; Calcium Signaling; Calpain; Cathepsins; Cells, Cultured; Cerebral Cortex; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Enzyme Activation; Epilepsy; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Hypoxia-Ischemia, Brain; Mice; Mice, Inbred BALB C; Neurons; Neurotoxins; Receptors, N-Methyl-D-Aspartate

2008
Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus.
    Journal of neurochemistry, 2008, Volume: 105, Issue:3

    Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (10 mg/kg) intraperitoneally and killed 24 h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labeling in the CA1 and CA3 areas of the hippocampus in the rats that received kainic acid, when compared with saline-treated rats. Immunohistochemistry and western blot analysis for the calpain-derived breakdown products of spectrin showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus.

    Topics: Animals; Calpain; Caspases; Convulsants; Dipeptides; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Epilepsy; Fluoresceins; Hippocampus; Kainic Acid; Male; Nerve Degeneration; Organic Chemicals; Rats; Rats, Wistar; Spectrin; Status Epilepticus; Time Factors

2008
Expression of calcineurin and its interacting proteins in epileptic fowl.
    Journal of neurochemistry, 2006, Volume: 96, Issue:2

    Calcineurin (CaN), a Ca2+-calmodulin (CaM)-dependent protein phosphatase, is important for Ca2+-mediated signal transduction. The main objective of this study was to examine the potential role of CaN in epileptic brain and its involvement in neuronal apoptosis. We investigated CaN expression and its interaction with various signaling molecules in normal, carrier and epileptic brain tissues of chicken. Our results revealed higher Ca2+-CaM-dependent phosphatase activity of CaN and a correspondingly strong immunoreactive band of CaN A in epileptic and carrier brain samples compared with normal brain. Furthermore, immunohistochemical analysis showed a higher level of expression of CaN in epileptic brain tissue. However, the intensity of immunoreactivity was less in carrier than epileptic brain. We observed that the interaction of CaN with m-calpain and micro-calpain was strong in carrier and epileptic chickens compared with that in normal birds. In addition, the interaction of CaN with Bcl-2, caspase-3 and p53 was greater in carrier and epileptic fowl than in normal chickens. The greater interaction of CaN with various apoptotic factors in epileptic chickens adds to our understanding of the mechanism of CaN signaling in neuronal apoptosis.

    Topics: Animals; Calcineurin; Calpain; Caspase 3; Caspases; Chickens; Epilepsy; Heterozygote; Male; Mutation; Peptide Hydrolases; Poultry; Proto-Oncogene Proteins c-bcl-2; Tumor Suppressor Protein p53

2006
Epilepsy and limb girdle muscular dystrophy type 2A: double trouble, serendipitous finding or new phenotype?
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2006, Volume: 27, Issue:2

    Autosomal recessive limb girdle muscular dystrophies (LGMD) type 2A are a group of disorders characterised by progressive involvement of proximal limb girdle muscles and caused by changes in the CAPN3 gene. Involvement of tissues other than the skeletal muscle has not been reported so far. Here we describe the unusual association of LGMD2A and idiopathic generalised epilepsy in a 14-year-old girl.

    Topics: Adolescent; Base Sequence; Calpain; Electroencephalography; Epilepsy; Female; Humans; Muscle Proteins; Muscular Dystrophies, Limb-Girdle; Mutation; Phenotype

2006
Proteolysis of NR2B by calpain in the hippocampus of epileptic rats.
    Neuroreport, 2005, Mar-15, Volume: 16, Issue:4

    Overactivation of N-methyl-D-aspartate receptors is known to mediate excitotoxicity due to excessive entry of calcium, leading to the activation of several calcium-dependent enzymes. Calpains are calcium-activated proteases that appear to play a role in excitotoxic neuronal death. Several cellular proteins are substrates for these proteases, particularly the N-methyl-D-aspartate receptor. Recently, cleavage of NR2B subunits has been implicated in excitotoxic neurodegeneration in ischemia. In this work, we investigated the proteolysis by calpains of NR2B subunits of the N-methyl-D-aspartate receptor in the hippocampus of epileptic rats. Our results show that cleaved forms of NR2B subunits are formed after status epilepticus, in the same areas of the hippocampus where calpain activation was detected by immunohistochemical staining of calpain-specific spectrin breakdown products.

    Topics: Animals; Calpain; Enzyme Activation; Epilepsy; Hippocampus; Kainic Acid; Male; Peptide Hydrolases; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate

2005