calpain and Demyelinating-Diseases

calpain has been researched along with Demyelinating-Diseases* in 11 studies

Reviews

3 review(s) available for calpain and Demyelinating-Diseases

ArticleYear
Activation of calpain and caspase pathways in demyelination and neurodegeneration in animal model of multiple sclerosis.
    CNS & neurological disorders drug targets, 2008, Volume: 7, Issue:3

    Experimental autoimmune encephalomyelitis (EAE), a widely recognized animal model of multiple sclerosis (MS), is highly useful for studying inflammation, demyelination, and neurodegeneration in the central nervous system (CNS). EAE exhibits many similarities with MS, which is a chronic inflammatory disease affecting CNS white matter in humans. Various studies have indicated that EAE is a particularly useful animal model for understanding both the mechanisms of immune-mediated CNS pathology and also the progressive clinical course of MS. Demyelination and axonal dysfunction have previously been shown in MS and EAE but current evidences indicate that axonal damage and neuron death also occur, demonstrating that these diseases harbor a neurodegenerative component. Recent studies also have shown that the activation of calpain and caspase pathways contribute to the apoptotic death of oligodendrocytes and neurons, promoting the pathological events leading to neurological deficits. Apoptosis is involved in the disease-regulating as well as in the disease-promoting processes in EAE. This review discusses the major involvement of calpain and caspase pathways in causing demyelination and neurodegeneration in EAE animals.

    Topics: Animals; Calpain; Demyelinating Diseases; Disease Models, Animal; Humans; Multiple Sclerosis; Nerve Degeneration; Signal Transduction

2008
Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain.
    Neurochemical research, 2001, Volume: 26, Issue:6

    Although calpain has been extensively studied, its physiological function is poorly understood. In contrast, its role in the pathophysiology of various diseases has been implicated, including that of experimental allergic encephalomyelitis (EAE), an animal model of the demyelinating disease multiple sclerosis (MS). In EAE, calpain degrades myelin proteins, including myelin basic protein (MBP), suggesting a role for calpain in the breakdown of myelin in this disease. Subsequent studies revealed increased calpain activity and expression in the glial and inflammatory cells concomitant with loss of axon and myelin proteins. This suggested a crucial role for calpain in demyelinating diseases.

    Topics: Animals; Calpain; Demyelinating Diseases; Encephalomyelitis, Autoimmune, Experimental; Humans; Immunohistochemistry; Myelin Sheath; Tissue Distribution

2001
Pathophysiological role of calpain in experimental demyelination.
    Journal of neuroscience research, 1999, Mar-01, Volume: 55, Issue:5

    Calcium-activated neutral proteinase (calpain) has been extensively studied over the past three decades such that many enzymatic and structural properties of this enzyme are well understood. However, the pathophysiological roles of calpain remain poorly defined. In addition to recent studies delineating a role for calpain in various pathological conditions, this proteinase has been implicated in the degradation of myelin proteins in autoimmune demyelinating diseases such as multiple sclerosis and experimental allergic encephalomyelitis (EAE). In EAE, calpain translational expression is significantly increased in activated glial/inflammatory cells that participate in myelinolysis while calpain substrates (axonal and myelin proteins) are lost. Thus, since all major myelin proteins are calpain substrates, early studies suggest calpain may play an important role in demyelination of the central nervous system.

    Topics: Animals; Calpain; Demyelinating Diseases; Encephalomyelitis, Autoimmune, Experimental; Enzyme Activation; Humans

1999

Other Studies

8 other study(ies) available for calpain and Demyelinating-Diseases

ArticleYear
Distinct Changes in Calpain and Calpastatin during PNS Myelination and Demyelination in Rodent Models.
    International journal of molecular sciences, 2022, Dec-06, Volume: 23, Issue:23

    Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of

    Topics: Animals; Axons; Calcium-Binding Proteins; Calpain; Demyelinating Diseases; Mice; Myelin Sheath; Rats; Rodentia; Sciatic Nerve

2022
Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain.
    Journal of neurochemistry, 2010, Volume: 113, Issue:4

    Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain through demyelination of the dorsal root (DR). Although LPA is found to cause down-regulation of myelin proteins underlying demyelination, the detailed mechanism remains to be determined. In the present study, we found that a single intrathecal injection of LPA evoked a dose- and time-dependent down-regulation of myelin-associated glycoprotein (MAG) in the DR through LPA(1) receptor. A similar event was also observed in ex vivo DR cultures. Interestingly, LPA-induced down-regulation of MAG was significantly inhibited by calpain inhibitors (calpain inhibitor X, E-64 and E-64d) and LPA markedly induced calpain activation in the DR. The pre-treatment with calpain inhibitors attenuated LPA-induced neuropathic pain behaviors such as hyperalgesia and allodynia. Moreover, we found that sciatic nerve injury activates calpain activity in the DR in a LPA(1) receptor-dependent manner. The E-64d treatments significantly blocked nerve injury-induced MAG down-regulation and neuropathic pain. However, there was no significant calpain activation in the DR by complete Freund's adjuvant treatment, and E-64d failed to show anti-hyperalgesic effects in this inflammation model. The present study provides strong evidence that LPA-induced calpain activation plays a crucial role in the manifestation of neuropathic pain through MAG down-regulation in the DR.

    Topics: Animals; Calpain; Cysteine Proteinase Inhibitors; Demyelinating Diseases; Disease Models, Animal; Enzyme Activation; Leucine; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myelin-Associated Glycoprotein; Neurotoxins; Peripheral Nervous System Diseases; Receptors, Lysophosphatidic Acid; Sciatic Neuropathy; Sensory Receptor Cells; Spinal Nerve Roots

2010
Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells.
    Journal of neurochemistry, 2009, Volume: 110, Issue:6

    Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.

    Topics: Animals; Axons; Boron Compounds; Calcium-Binding Proteins; Calpain; Cell Survival; Demyelinating Diseases; Dipeptides; Disease Models, Animal; DNA Fragmentation; Dose-Response Relationship, Drug; Encephalomyelitis, Autoimmune, Experimental; Female; In Situ Nick-End Labeling; L-Lactate Dehydrogenase; Mice; Myelin Basic Protein; Statistics, Nonparametric; T-Lymphocytes; Time Factors

2009
Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination.
    Journal of neuroscience research, 2007, Volume: 85, Issue:13

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which allows vibrational imaging of myelin sheath in its natural state, was applied to characterize lysophosphatidylcholine (lyso-PtdCho)-induced myelin degradation in tissues and in vivo. After the injection of lyso-PtdCho into ex vivo spinal tissues or in vivo mouse sciatic nerves, myelin swelling characterized by the decrease of CARS intensity and loss of excitation polarization dependence was extensively observed. The swelling corresponds to myelin vesiculation and splitting observed by electron microscopy. The demyelination dynamics were quantified by the increase of g ratio measured from the CARS images. Treating spinal tissues with Ca2+ ionophore A23187 resulted in the same kind of myelin degradation as lyso-PtdCho. Moreover, the demyelination lesion size was significantly reduced upon preincubation of the spinal tissue with Ca2+ free Krebs' solution or a cytosolic phospholipase A2 (cPLA(2)) inhibitor or a calpain inhibitor. In accordance with the imaging results, removal of Ca2+ or addition of cPLA(2) inhibitor or calpain inhibitor in the Krebs' solution remarkably increased the mean compound action potential amplitude in lyso-PtdCho treated spinal tissues. Our results suggest that lyso-PtdCho induces myelin degradation via Ca(2+) influx into myelin and subsequent activation of cPLA(2) and calpain, which break down the myelin lipids and proteins. The current work also shows that CARS microscopy is a potentially powerful tool for the study of demyelination.

    Topics: Action Potentials; Animals; Calcium; Calpain; Cysteine Proteinase Inhibitors; Demyelinating Diseases; Dipeptides; Disease Models, Animal; Electric Stimulation; Female; Guinea Pigs; Lipopolysaccharides; Lysophosphatidylcholines; Microscopy, Electron, Transmission; Microscopy, Interference; Myelin Sheath; Neural Conduction; Scattering, Radiation; Spectrum Analysis, Raman; Time Factors

2007
A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain.
    Proceedings of the National Academy of Sciences of the United States of America, 1999, Sep-28, Volume: 96, Issue:20

    In autoimmune demyelinating diseases such as multiple sclerosis (MS), the degradation of myelin proteins results in destabilization of the myelin sheath. Thus, proteases have been implicated in myelin protein degradation, and recent studies have demonstrated increased expression and activity of a calcium-activated neutral proteinase (calpain) in experimental allergic encephalomyelitis, the corresponding animal model of MS. In the present study, calpain activity and expression (at translational and transcriptional levels) were evaluated in white matter from human patients with MS and Parkinson's and Alzheimer's diseases and compared with that of white matter from normal controls. Western blot analysis revealed that levels of the active form of calpain and calpain-specific degradation products (fodrin) were increased by 90.1% and 52.7%, respectively, in MS plaques compared with normal white matter. Calpain translational expression was up-regulated by 462.5% in MS plaques compared with controls, although levels of the specific endogenous inhibitor, calpastatin, were not altered significantly. At the transcriptional level, no significant changes in calpain or calpastatin expression were detected by reverse transcription-PCR. Using double immunofluorescent labeling, increased calpain expression was observed in reactive astrocytes, activated T cells, and activated mononuclear phagocytes in and adjacent to demyelinating lesions. Calpain activity and translational expression were not increased significantly in white matter from patients with Parkinson's or Alzheimer's diseases compared with that of normal controls. Because calpain degrades all major myelin proteins, the increased activity and expression of this proteinase may play a critical role in myelinolysis in autoimmune demyelinating diseases such as MS.

    Topics: Calcium; Calcium-Binding Proteins; Calpain; Demyelinating Diseases; Fluorescent Antibody Technique; Humans; Multiple Sclerosis; Protein Biosynthesis; Transcription, Genetic

1999
Increased calpain expression in experimental demyelinating optic neuritis: an immunocytochemical study.
    Brain research, 1998, Feb-16, Volume: 784, Issue:1-2

    Since calcium activated neutral proteinase (calpain) is present in the central nervous system (CNS) and degrades myelin proteins, this endopeptidase has been suggested to play a role in myelin destruction in demyelinating diseases such as multiple sclerosis (MS). In the present study, calpain immunocytochemical expression was examined in Lewis rats with acute experimental allergic encephalomyelitis (EAE), an animal model for MS and optic neuritis. To identify cells expressing calpain, we labeled rat optic nerve sections for calpain with a polyclonal myelin calpain antibody and with monoclonal antibodies for glial (GFAP, OX42) and inflammatory (CD2, ED2, ED1, IFN-gamma) cell-specific markers. The results showed increased calpain expression in microglia (OX42) and infiltrating macrophages (ED1,2) in EAE compared to normal controls. Astrocytes constitutively expressed calpain in controls and acute EAE. Reactive astrocytes in EAE located in or near inflammatory foci, exhibited markedly increased calpain expression. Most T cells in acute EAE showed low level calpain expression while activated IFN-gamma-producing lymphocytes in inflammatory foci exhibited elevated levels of calpain expression. Thus, our results demonstrate increased calpain expression (at transcriptional and/or translational levels) in a rat model of optic neuritis. A role for calpain in myelin destruction during optic neuritis may be relevant to the pathogenesis of this disorder.

    Topics: Animals; Astrocytes; Calpain; Demyelinating Diseases; Encephalomyelitis, Autoimmune, Experimental; Fluorescent Antibody Technique, Indirect; Immunohistochemistry; Macrophages; Male; Microglia; Optic Nerve; Optic Neuritis; Rats; Rats, Inbred Lew

1998
Calpain secreted by activated human lymphoid cells degrades myelin.
    Journal of neuroscience research, 1995, Oct-01, Volume: 42, Issue:2

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination.

    Topics: Animals; Antibodies, Monoclonal; Calcimycin; Calcium; Calcium-Binding Proteins; Calpain; Chelating Agents; Culture Media, Conditioned; Demyelinating Diseases; Egtazic Acid; Humans; Leukemia-Lymphoma, Adult T-Cell; Lymphoma, Large B-Cell, Diffuse; Monocytes; Myelin Basic Protein; Myelin Sheath; Neoplasm Proteins; Protease Inhibitors; Rabbits; Rats; T-Lymphocytes; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured

1995
Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant paralytic tremor rabbit myelin.
    Molecular and chemical neuropathology, 1992, Volume: 16, Issue:3

    Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant, paralytic tremor (PT) rabbit myelin and premyelin fractions was studied using immature (4-5 wk) or adult animals. The enzyme was estimated by determination of its catalytic activity as well as by using immunoblot analysis after SDS-PAGE separation. The presence of two forms of CANP--one activated by calcium in the micromolar concentration (mu CANP) range and the other exhibiting low calcium sensitivity in the millimolar concentration range (m-CANP)--was found in the myelin and premyelin fractions. The developmental pattern of the enzyme activity was different for each of these two enzyme isoforms depending on the fraction studied. The higher activity on CANP (both isoforms) found in PT myelin and premyelin could be related to delayed myelination and/or to the higher turnover rate of already formed myelin. These results suggest complex and specific roles for these isoenzymes during myelin formation as is discussed further in this article. Our results confirm the extensive degradation of myelin basic protein (MBP), proteolipid protein (PLP), and, to a lesser extent, the other myelin proteins by endo- and exogenous CANP. This degradation process was significantly elevated in PT rabbit myelin. Moreover as was shown by two-dimensional gel electrophoresis, calcium-controlled proteolysis in nonmutant rabbits affected the net-charge of MBP in a manner similar to that reported for PT myelin, suggesting the possible involvement of CANP in the generation of charge isomers of MBP.

    Topics: Animals; Brain Chemistry; Calpain; Demyelinating Diseases; Isoenzymes; Muscle Proteins; Mutation; Myelin Proteins; Myelin Sheath; Paralysis; Rabbits; Tremor

1992