calixarenes and Carcinoma--Hepatocellular

calixarenes has been researched along with Carcinoma--Hepatocellular* in 2 studies

Other Studies

2 other study(ies) available for calixarenes and Carcinoma--Hepatocellular

ArticleYear
Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells.
    Journal of experimental & clinical cancer research : CR, 2019, Oct-22, Volume: 38, Issue:1

    Galectins are beta-galactose specific binding proteins. In human cancers, including hepatocellular carcinoma (HCC), galectin-1 (Gal-1) is often found to be overexpressed. In order to combat the dismal diagnosis and death rates of HCC, gene silencing and targeted inhibition of Gal-1 was investigated for its improved therapeutic potential.. Cellular and secretory Gal-1 levels were analyzed using HCC clinical samples. The study of Gal-1 was carried by both knockdown and overexpression approaches. The stable clones were tested by in vitro assays and in vivo experiments. Mass spectrometry was used to identify downstream targets of Gal-1. The upstream regulator of Gal-1, microRNA-22 (miR-22) was characterized by functional assays. The therapeutic effect of inhibiting Gal-1 was also analyzed.. Gal-1 overexpression was observed in HCC and correlated with aggressive clinicopathological features and poorer survival. The loss of Gal-1 resulted in hindered cell migration, invasion and anchorage independent growth. This was also observed in the animal models, in that when Gal-1 was knocked down, there were fewer lung metastases. Proteomic profiling of control and Gal-1 knockdown cells identified that the level of retention in endoplasmic reticulum 1 (RER1) was suppressed when Gal-1 level was reduced. The cell motility of Gal-1 knockdown cells was enhanced upon the rescue of RER1 expression. In HCC tissues, Gal-1 and RER1 expressions displayed a significant positive correlation. The upstream regulator of Gal-1, miR-22 was observed to be underexpressed in HCC tissues and negatively correlated with Gal-1. Silencing of miR-22 resulted in the upregulation of Gal-1 and enhanced cell growth, migration and invasion. However, such enhancement was abolished in cells treated with OTX008, an inhibitor of Gal-1. Combinational treatment of OTX008 and sorafenib significantly reduced tumor growth and size.. Gal-1 overexpression was detected in HCC and this played a role in promoting tumorigenic processes and metastasis. The function of Gal-1 was found to be mediated through RER1. The correlations between miR-22, Gal-1 and RER1 expressions demonstrated the importance of miR-22 regulation on Gal-1/RER1 oncogenic activity. Lastly, the combinational treatment of OTX008 and sorafenib proved to be an improved therapeutic option compared to when administering sorafenib alone.

    Topics: Animals; Calixarenes; Carcinoma, Hepatocellular; Galectin 1; Humans; Liver Neoplasms; Male; Mice; Mice, Nude; Sorafenib; Transfection

2019
Modulation of cell proliferation in rat liver cell cultures by new calix[4]arenes.
    Journal of enzyme inhibition and medicinal chemistry, 2006, Volume: 21, Issue:3

    Cell cycle progression is dependent on intracellular iron level and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing two aspartic/glutamic acid, ornithine groups or hydrazide function at the lower rim, designed as potential iron chelators. The synthesis only afforded calix[4]arenes in the cone conformation. We report their effect on cell proliferation, in comparison with the new oral chelator ICL670A (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid). The antiproliferative effect of these new compounds was studied in the rat hepatoma cell line Fao by measuring mitochondrial succinate dehydrogenase activity. Their cytotoxicity was evaluated by extracellular LDH activity. Preliminary results indicated that among all tested compounds, monohydrazidocalix[4]arene 2 which is not cytotoxic in Fao cells exhibits interesting antiproliferative activity. This effect, independent on iron depletion, remains to be further explored. Moreover, it also shows that new substituted calix[4]arenes could open the way to new valuable medicinal chemistry scaffolding.

    Topics: Animals; Benzoates; Calixarenes; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Deferasirox; Drug Screening Assays, Antitumor; Hydroxyl Radical; Iron Chelating Agents; Molecular Structure; Phenols; Rats; Solubility; Structure-Activity Relationship; Triazoles; Tumor Cells, Cultured

2006