calcimycin has been researched along with Malaria--Falciparum* in 2 studies
2 other study(ies) available for calcimycin and Malaria--Falciparum
Article | Year |
---|---|
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
Infection by Plasmodium falciparum is the leading cause of malaria in humans. The parasite contains a unique and essential plastid-like organelle called the apicoplast that, similar to the mitochondria and chloroplast, houses its own genome that must undergo replication and repair. The putative apicoplast replicative DNA polymerase, POM1, has no direct orthologs in mammals, making the P. falciparum POM1 an attractive antimalarial drug target. Here, we report on a fluorescent high-throughput DNA polymerase assay that relies on the ability of POM1 to perform strand-displacement synthesis through the stem of a DNA hairpin substrate, thereby separating a Cy3 dye from a quencher. Assay-validation experiments were performed using 384-well plates and resulted in a signal window of 7.90 and aZ' factor of 0.71. A pilot screen of a 2880-compound library identified 62 possible inhibitors that cause more than 50% inhibition of polymerase activity. The simplicity and statistical robustness of the assay suggest it is well suited for the screening of novel apicoplast polymerase inhibitors that may serve as lead compounds in antimalarial drug-discovery efforts. Topics: Antimalarials; Apicoplasts; Chloroplasts; DNA; DNA-Directed DNA Polymerase; Drug Discovery; Exonucleases; Humans; Kinetics; Malaria, Falciparum; Mitochondria; Multienzyme Complexes; Nucleic Acid Synthesis Inhibitors; Peptide Library; Plasmodium falciparum; Protozoan Proteins; Spectrometry, Fluorescence | 2014 |
Passive Ca(2+) transport and Ca(2+)-dependent K(+) transport in Plasmodium falciparum-infected red cells.
Previous reports have indicated that Plasmodium falciparum-infected red cells (pRBC) have an increased Ca(2+) permeability. The magnitude of the increase is greater than that normally required to activate the Ca(2+)-dependent K(+) channel (K(Ca) channel) of the red cell membrane. However, there is evidence that this channel remains inactive in pRBC. To clarify this discrepancy, we have reassessed both the functional status of the K(Ca) channel and the Ca(2+) permeability properties of pRBC. For pRBC suspended in media containing Ca(2+), K(Ca) channel activation was elicited by treatment with the Ca(2+) ionophore A23187. In the absence of ionophore the channel remained inactive. In contrast to previous claims, the unidirectional influx of Ca(2+) into pRBC in which the Ca(2+) pump was inhibited by vanadate was found to be within the normal range (30-55 micromol (10(13) cells. hr)(-1)), provided the cells were suspended in glucose-containing media. However, for pRBC in glucose-free media the Ca(2+) influx increased to over 1 mmol (10(13) cells. hr)(-1), almost an order of magnitude higher than that seen in uninfected erythrocytes under equivalent conditions. The pathway responsible for the enhanced influx of Ca(2+) into glucose-deprived pRBC was expressed at approximately 30 hr post-invasion, and was inhibited by Ni(2+). Possible roles for this pathway in pRBC are considered. Topics: Animals; Calcimycin; Calcium; Cell Membrane Permeability; Erythrocytes; Humans; In Vitro Techniques; Ion Transport; Ionophores; Malaria, Falciparum; Nickel; Plasmodium falciparum; Potassium; Potassium Channels; Rubidium | 1999 |