calcimycin and Leukemia-P388

calcimycin has been researched along with Leukemia-P388* in 4 studies

Other Studies

4 other study(ies) available for calcimycin and Leukemia-P388

ArticleYear
Cytosolic phospholipase A2-mediated regulation of phospholipase D2 in leukocyte cell lines.
    Journal of immunology (Baltimore, Md. : 1950), 1999, Nov-15, Volume: 163, Issue:10

    Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Calcimycin; COS Cells; Cytosol; Enzyme Activation; Enzyme Inhibitors; Humans; Isoenzymes; Leukemia L1210; Leukemia P388; Leukocytes; Lysophosphatidylcholines; Mice; Oligonucleotides, Antisense; Phospholipase D; Phospholipases A; Phospholipases A2; Tetradecanoylphorbol Acetate; Transfection; Tumor Cells, Cultured; U937 Cells

1999
Mechanism of spermidine uptake in cultured mammalian cells and its inhibition by some polyamine analogues.
    Pathobiology : journal of immunopathology, molecular and cellular biology, 1990, Volume: 58, Issue:3

    Transport pathways for spermidine (Spd) were characterized in mammalian cells in culture of different origin, i.e. L 1210, P 388, C 6, U 251, Balb/c 3T3 normal and transformed by virus SV40 (SV40/3T3). The kinetic constants (Km and Vmax) for 14C-Spd uptake were found to be different in these cells. Spd uptake was inhibited by spermine and putrescine in all cells. Preloading of these cells with system A and other amino acids, including ornithine, usually did not affect Spd uptake, except in L 1210 and C 6 cells, where Spd uptake was accelerated by 2-aminoisobutyric acid, demonstrating that in these two cell lines the polyamines share the system A pathway. Iso-osmotic replacement of Na+ by choline chloride in the assay medium resulted in a decrease in Spd uptake which suggests that Spd uptake is Na+ activated. In all cells, Spd uptake was inhibited by gramicidin and the Ca2+ ionophore A 23187. The degree of inhibition varied among the cells. Valinomycin (K+ ionophore) inhibited Spd uptake by C 6, P 388, Balb/c 3T3 and SV40/3T3 but not by L 1210 and U 251 cells. Treatment with N-ethylmaleimide or p-L 1210, C 6, Balb/c 3T3 and SV40/3T3 cells did not affect appreciably the uptake process. Some newly synthesized polyamine analogues inhibited the Spd uptake of all cells.

    Topics: Amino Acids; Animals; Biological Transport; Calcimycin; Fibroblasts; Glioma; Gramicidin; Humans; Leukemia L1210; Leukemia P388; Mice; Mice, Inbred BALB C; Polyamines; Sodium; Spermidine; Sulfhydryl Reagents; Tumor Cells, Cultured; Valinomycin

1990
Inductive effect of recombinant human interleukin-1 alpha and beta on differentiation of macrophage-like tumor cell line P388D1.
    Journal of cellular physiology, 1988, Volume: 136, Issue:3

    We used the mouse monocyte/macrophage-like tumor cell line P388D1 to test whether or not interleukin-1 (IL-1) stimulates differentiation of monocyte/macrophage progenitors. Incubation of these cells with recombinant human interleukin-1 (rhIL-1) alpha and beta resulted in their increased adherence, stimulation of nonspecific esterase activity, and increased Fc rosette formation. rhIL-1s inhibited cell growth and stimulated Fc rosette formation in a dose-dependent fashion. The cell growth inhibition due to rhIL-1s depended on the concentration of serum in culture medium. Synergism between rhIL-1 and calcium ionophore A23187 was found for the cell growth inhibition and Fc rosette formation. The presence of ethylene glycol bis- (beta-aminoethyl ether) N,N,N,N,-tetraacetic acid(EGTA) in the medium abolished the stimulatory effect of rhIL-1 on Fc rosette formation of the cell line. These results demonstrate that rhIL-1s are a potent inducer of the differentiation of the macrophage-like tumor cell line P388D1.

    Topics: Animals; Calcimycin; Cell Differentiation; Cell Line; Hematopoietic Stem Cells; Humans; Interleukin-1; Leukemia P388; Macrophages; Mice; Recombinant Proteins; Rosette Formation

1988
Activation of IL 1-dependent and IL 1-independent T cell lines by calcium ionophore and phorbol ester.
    Journal of immunology (Baltimore, Md. : 1950), 1986, Feb-01, Volume: 136, Issue:3

    We have studied the activation of interleukin 1 (IL 1)-dependent and IL 1-independent T cell lines, specifically their capacity to produce and secrete interleukin 2 (IL 2). The IL 1-dependent T cell lymphoma LBRM33-1A5.47, which requires phytohemagglutinin (PHA) and IL 1 to produce IL 2, was compared with the IL 1-independent T cell lymphoma LBRM33-5A4 and T cell hybridomas DO-11.10/S4.4 and 3DO-54.8. The latter hybridomas do not require exogenous IL 1 to produce IL 2 in response to mitogens or ovalbumin (OVA)/I-Ad. Even though IL 1 is not required by these IL 1-independent T cell lines, we tested whether IL 1 could modulate their response but found no significant effect of exogenous IL 1. We then studied the activation of these T cell lines by the calcium ionophore A23187 and phorbol myristate acetate (PMA). In the case of the IL 1-dependent line LBRM33-1A5.47, there was a strong response when both A23187 and PMA were used simultaneously. We subsequently found that A23187 can replace PHA, and PMA can replace IL 1 in the activation of this cell line to IL 2 production. These observations suggest that the signal(s) provided by PHA and IL 1 involve at least in part a calcium flux, and activation of protein kinase C. Parallel experiments with the use of the IL 1-independent T cell lines showed a strong response to both agents when used simultaneously. A modest response observed to A23187 alone was always enhanced by the addition of PMA. No response was observed to PMA alone. IL 1-rich P388D1 supernatant could replace the enhancing effect of PMA in the response of the IL 1-independent T cell lines. We suggest that the activating signals provided by A23187 and PMA are at least part of the sequence of events that lead to production of IL 2 in either IL 1-dependent or IL 1-independent T cell lines. In IL 1-independent T cell lines, however, both of the activating signals studied may be delivered through stimulation of the Antigen-MHC T cell receptor.

    Topics: Animals; Calcimycin; Cell Line; Dose-Response Relationship, Immunologic; Humans; Hybridomas; Interleukin-1; Interleukin-2; Leukemia P388; Lymphocyte Activation; Lymphoma; Mice; Phorbols; T-Lymphocytes; Tetradecanoylphorbol Acetate

1986