calcimycin has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 4 studies
4 other study(ies) available for calcimycin and Chemical-and-Drug-Induced-Liver-Injury
Article | Year |
---|---|
Leukotrienes and alpha-naphthylisothiocyanate-induced liver injury.
alpha-naphthylisothiocyanate (ANIT) administration to rats results in periportal hepatic inflammation and injury. Glutathione (GSH) appears to be necessary for the liver injury to occur. The leukotrienes (LTs) are metabolites of arachidonic acid and potent mediators of inflammation that have been implicated in certain liver injury models. Inasmuch as GSH is a cofactor for the synthesis of cysteinyl-LTs and since inflammation is a prominent component of ANIT injury, we hypothesized that LTs are involved in producing the hepatic insult that results from ANIT administration. To test this hypothesis, rats were treated with one of several inhibitors of LT biosynthesis, A63162, Zileuton or MK-886. Each of these agents prevented the formation of LTB4 in Ca++ ionophore-stimulated whole blood from rats treated with the inhibitors. A63162 attenuated the hepatic parenchymal injury caused by ANIT and resulted in a modest decrease in ANIT-induced cholestasis. In contrast, neither Zileuton nor MK-886 attenuated liver injury. AT-125 (Acivicin) inhibits gamma-glutamyl transferase (GGT), the enzyme that catalyzes the formation of LTD4 from LTC4. AT-125 pretreatment did not prevent ANIT-induced hepatic parenchymal insult. It did, however, ameliorate the cholestasis caused by ANIT. In conclusion, the partial protection afforded by A63162 and AT-125 likely results from effects unrelated to the formation of LTs, since Zileuton and MK-886 inhibited LT synthesis without affording protection. The lack of protection by Zileuton and MK-886 in the face of LT synthesis inhibition suggests that LTs are not necessary for the expression of injury after ANIT administration. Topics: 1-Naphthylisothiocyanate; Acetamides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Calcimycin; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Glutathione; Hydroxyurea; Indoles; Inflammation; Leukotriene Antagonists; Leukotrienes; Lipoxygenase Inhibitors; Liver; Liver Diseases; Male; Phenyl Ethers; Rats; Rats, Sprague-Dawley | 1995 |
Mechanism of chemical-induced toxicity. II. Role of extracellular calcium.
Previous studies disagree as to if chemical-induced cell death is caused by the influx and accumulation of extracellular Ca2+. To determine the role of extracellular Ca2+ in toxic cell death, the viability (leakage of intracellular K+ and lactate dehydrogenase) and total Ca2+ content of isolated hepatocytes incubated in the presence or absence of extracellular Ca2+ were determined during a toxic insult with bromobenzene, ethyl methanesulfonate (EMS), Ca2+ ionophore A23187, and adriamycin (ADR) in combination with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). The present study utilized the dibutyl phthalate separation technique which enabled the analysis of only viable hepatocytes for changes in intracellular Ca2+ and K+ content during toxic cell injury. The three chemical treatments, bromobenzene, EMS, and ADR-BCNU, each caused an accelerated loss of viability in hepatocytes incubated without extracellular Ca2+ as compared to cells incubated with Ca2+. Furthermore, the total Ca2+ content of viable hepatocytes incubated in the presence of extracellular Ca2+ did not increase during chemically induced cell injury as compared to control cells. In fact, a significant decline in total cellular Ca2+ was observed in viable hepatocytes incubated in Ca2+-free medium during toxic cell injury. Treatment with Ca2+ ionophore A23187 was also toxic to hepatocytes incubated in the presence or absence of extracellular Ca2+. At high concentrations of ionophore (20 microM or 4 micrograms/10(6) cells), cell death was accelerated in hepatocytes incubated with Ca2+ as compared to cells incubated in Ca2+-free medium. In contrast, after treatment with lower concentrations of ionophore (10 microM or 2 micrograms/10(6) cells), the rate of cell death was reversed with hepatocytes incubated without extracellular Ca2+ dying first. Thus, depending on the concentration of A23187 and the time of exposure, the presence of extracellular Ca2+ can be shown either to accelerate or protect against cell death. Surprisingly, reversible and irreversible cell injury were not observed in hepatocytes incubated with extracellular Ca2+ and 2 microM A23187 though this treatment resulted in an 800% increase in total intracellular Ca2+ content. We conclude that chemical-induced hepatic cell death is not caused by an increase in total cellular Ca2+ resulting from the influx of extracellular Ca2+. Topics: Animals; Calcimycin; Calcium; Carbon Tetrachloride; Carmustine; Cell Separation; Cell Survival; Chemical and Drug Induced Liver Injury; Drug Combinations; Drug Interactions; Ethyl Methanesulfonate; Extracellular Space; In Vitro Techniques; Intracellular Fluid; L-Lactate Dehydrogenase; Liver; Perchlorates; Rats | 1985 |
The effect of ionophore A23187 and 2,4-dinitrophenol on the structure and function of cultured liver cells.
Topics: 2,4-Dinitrophenol; Adenosine Triphosphate; Animals; Anti-Bacterial Agents; Calcimycin; Cells, Cultured; Chemical and Drug Induced Liver Injury; Dinitrophenols; Ethionine; L-Lactate Dehydrogenase; Liver; Male; Microscopy, Electron, Scanning; Rats; Rats, Inbred Strains | 1982 |
The effect of ionophore A23187 and calcium on carbon tetrachloride-induced toxicity in cultured rat hepatocytes.
Topics: Animals; Anti-Bacterial Agents; Biotransformation; Bromotrichloromethane; Calcimycin; Calcium; Carbon Tetrachloride Poisoning; Cells, Cultured; Chemical and Drug Induced Liver Injury; In Vitro Techniques; L-Lactate Dehydrogenase; Male; Rats | 1981 |