calcimycin and Brain-Injuries

calcimycin has been researched along with Brain-Injuries* in 4 studies

Other Studies

4 other study(ies) available for calcimycin and Brain-Injuries

ArticleYear
Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma.
    The European journal of neuroscience, 2004, Volume: 20, Issue:7

    Early deterioration and death after brain injury is often the result of oedema in the injured and peri-lesional tissue. So far, no pharmacotherapy is available that exhibits significant brain oedema-reducing efficacy in patients. We selected two low molecular weight compounds from different chemical classes, a triazole (1-[(2-chlorophenyl)diphenylmethyl]-1,2,3-triazole) and a cyclohexadiene (methyl 4-[4-chloro-3-(trifluoromethyl)phenyl]-6-methyl-3-oxo-1,4,7-tetrahydroisobenzofuran-5-carboxylate) to characterize their pharmacological properties on KCNN4 channels (intermediate/small conductance calcium-activated potassium channel, subfamily N, member 4) in vitro as well as in vivo. In vitro we replaced potassium by rubidium (Rb+) and determined Rb+ fluxes evoked by 10 micro m of the calcium ionophore A23187 on C6BU1 rat glioma cells. Compared with known KCNN4 blockers, such as clotrimazole (IC50=360 +/- 12 nm) and charybdotoxin (IC50=3.3 +/- 1.9 nm), the triazole and cyclohexadiene were considerably more potent than clotrimazole and displayed similar potencies (IC50=12.1 +/- 8.8 and 13.3 +/- 4.7 nm, respectively). In the rat acute subdural haematoma model, both the triazole and cyclohexadiene displayed reduction of brain water content (-26% at 0.3 mg/kg and -24% at 0.01 mg/kg) and reduction of the intracranial pressure (-46% at 0.1 mg/kg and -60% at 0.003 mg/kg) after 24 h when administered as a 4-h infusion immediately after brain injury. When infarct volumes were determined after 7 days, the triazole as well as the cyclohexadiene displayed strong neuroprotective efficacy (-52% infarct volume reduction at 1.2 mg/kg and -43% at 0.04 mg/kg, respectively). It is concluded that blockade of KCNN4 channels is a new pharmacological approach to attenuate acute brain damage caused by traumatic brain injury.

    Topics: Animals; Brain Chemistry; Brain Edema; Brain Injuries; Calcimycin; Cell Line, Tumor; Cerebral Infarction; Charybdotoxin; Clotrimazole; DNA Primers; Erythrocytes; Glioma; Hematoma, Subdural; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Potassium Channel Blockers; Potassium Channels, Calcium-Activated; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Rubidium; Water

2004
Diffusion magnetic resonance imaging study of a rat hippocampal slice model for acute brain injury.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2003, Volume: 23, Issue:12

    Diffusion magnetic resonance imaging (MRI) provides a surrogate marker of acute brain pathology, yet few studies have resolved the evolution of water diffusion changes during the first 8 hours after acute injury, a critical period for therapeutic intervention. To characterize this early period, this study used a 17.6-T wide-bore magnet to measure multicomponent water diffusion at high b-values (7 to 8,080 s/mm(2)) for rat hippocampal slices at baseline and serially for 8 hours after treatment with the calcium ionophore A23187. The mean fast diffusing water fraction (Ffast) progressively decreased for slices treated with 10-microM/L A23187 (-20.9 +/- 6.3% at 8 hours). Slices treated with 50-micromol/L A23187 had significantly reduced Ffast 80 minutes earlier than slices treated with 10-microM/L A23187 (P < 0.05), but otherwise, the two doses had equivalent effects on the diffusion properties of tissue water. Correlative histologic analysis showed dose-related selective vulnerability of hippocampal pyramidal neurons (CA1 > CA3) to pathologic swelling induced by A23187, confirming that particular intravoxel cell populations may contribute disproportionately to water diffusion changes observed by MRI after acute brain injury. These data suggest diffusion-weighted images at high b-values and the diffusion parameter Ffast may be highly sensitive correlates of cell swelling in nervous issue after acute injury.

    Topics: Acute Disease; Animals; Brain Injuries; Brain Ischemia; Calcimycin; Diffusion; Diffusion Magnetic Resonance Imaging; Disease Models, Animal; Edema; Hippocampus; Ionophores; Male; Neurons; Organ Culture Techniques; Rats; Rats, Long-Evans

2003
Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: evidence for a cytoprotective response.
    Journal of neuroscience research, 1995, Oct-15, Volume: 42, Issue:3

    Calbindin is a 28 kDa calcium-binding protein expressed in restricted neuronal populations in the mammalian brain where it may play a role in protecting neurons against excitotoxic insults. Recent findings indicate that electrical activity and some neurotrophic factors can induce the expression of calbindin in neurons. We now report that brain injury, effected by systemic administration of the excitotoxin kainate or mechanical trauma, induces expression of calbindin in cells of the corpus callosum and subcortical white matter. Immunohistochemical analysis using antibodies to the astrocyte-specific proteins (glial fibrillary acidic protein and S-100 beta) established the identity of calbindin immunoreactive cells as astrocytes. Because brain injury is known to induce the expression of several neurotrophic factors and cytokines, we employed cultures of hippocampal and neocortical astrocytes to test the hypothesis that such factors can induce expression of calbindin in astrocytes. Tumor necrosis factors (TNF alpha and TNF beta), cytokines that are expressed in response to brain injury, induced the expression of calbindin in cultured rat hippocampal and neocortical astrocytes. Two neurotrophic factors, basic fibroblast growth factor and nerve growth factor, did not induce calbindin in astrocytes. TNF-treated, calbindin-expressing astrocytes were resistant to acidosis and calcium ionophore toxicity, suggesting that TNFs and calbindin may serve a cytoprotective role in astrocytes in the injured brain.

    Topics: Animals; Astrocytes; Blotting, Western; Brain Injuries; Calbindins; Calcimycin; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acid Agonists; Hippocampus; Immunohistochemistry; Ionophores; Kainic Acid; Lymphotoxin-alpha; Male; Malonates; Rats; Rats, Sprague-Dawley; S100 Calcium Binding Protein G; Tumor Necrosis Factor-alpha

1995
Human glial cell production of lipoxygenase-generated eicosanoids: a potential role in the pathophysiology of vascular changes following traumatic brain injury.
    The Journal of trauma, 1989, Volume: 29, Issue:9

    Acute cerebrovascular changes which occur following traumatic brain injury represent a highly complex, multifactorial pathophysiologic process which is poorly understood. It is now recognized that, under normal conditions, the brain is a source of a variety of arachidonic acid metabolites which are synthesized by both cyclooxygenase and lipoxygenase. The specific cellular source of these highly vasoactive substances remains controversial. Recent work has demonstrated that lipoxygenase products were detected by immunosensitive assay in whole brain samples from a gerbil concussive injury model, yet the production of leukotrienes could not be accounted for by cerebral vessels and their contents alone. It has been theorized that the probable source for these metabolites is the cortical neuron. We sought to elucidate whether cultured human glial cells, obtained from specimens removed at the time of surgery, are a significant source of lipoxygenase products as measured by high performance liquid chromatography (HPLC). We observed that these cells consistently produced 5, 12, and 15-HETE class eicosanoids despite failure to produce significant cyclooxygenase products. These preliminary findings are of considerable interest because these lipoxygenase products are known to be highly vasoactive as well as potent mediators of increased vascular permeability. Since it is known that mechanical perturbation of cell membranes stimulates the release of arachidonic acid from membrane phospholipids, it is conceivable that the production of these eicosanoids following traumatic brain injury could account for local cerebrovascular changes including both vasospasm and interstitial edema formation.

    Topics: Brain Injuries; Calcimycin; Cells, Cultured; Cerebrovascular Circulation; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Humans; Hydroxyeicosatetraenoic Acids; Lipoxygenase; Neuroglia

1989