calcimycin and Aortic-Diseases

calcimycin has been researched along with Aortic-Diseases* in 3 studies

Other Studies

3 other study(ies) available for calcimycin and Aortic-Diseases

ArticleYear
Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice.
    Arteriosclerosis, thrombosis, and vascular biology, 1997, Volume: 17, Issue:11

    We examined the vascular structure and endothelium-dependent relaxation in two genetic models of hypercholesterolemia: apolipoprotein E (apoE)-knockout mice and combined apoE/LDL receptor-double-knockout mice. Intimal area was increased markedly in proximal segments of thoracic aortas from apoE/LDL receptor-knockout mice [0.13 +/- 0.03 (mean +/- SE) mm2] compared with normal (C57BL/6J) mice (0.002 +/- 0.002 mm2, P < .05). Despite intimal thickening, the vascular lumen was not smaller in the aortas of apoE/LDL receptor-knockout mice (0.52 +/- 0.03 mm2) than in normal mice (0.50 +/- 0.03 mm2). In apoE-deficient mice, intimal thickening was minimal or absent, even though the concentration of plasma cholesterol was only modestly less than that in the double-knockout mouse (14.9 +/- 1.1 vs 18.0 +/- 1.2 mmol/L, respectively, P < .05). Relaxation of the aorta was examined in vitro in vascular rings precontracted with U46619. In normal mice, acetylcholine produced relaxation, which was markedly attenuated by the nitric oxide synthase inhibitor NG-nitro-L-arginine (100 microM). Relaxation to acetylcholine and the calcium ionophore A23187 was normal in apoE-deficient mice (in which lesions were minimal) but greatly impaired in the proximal segments of thoracic aortas of apoE/LDL receptor-deficient mice, which contained atherosclerotic lesions. Vasorelaxation to nitroprusside was similar in normal and apoE-knockout mice, with modest but statistically significant impairment in atherosclerotic segments of apoE/LDL receptor-knockout mice. In distal segments of the thoracic aorta of apoE/LDL receptor-deficient mice, atherosclerotic lesions were minimal or absent, and the endothelium-dependent relaxation to acetylcholine and calcium ionophore was normal. Thus, in apoE/LDL receptor-knockout mice (a genetic model of hyperlipidemia), there is vascular remodeling with preservation of the aortic lumen despite marked intimal thickening, with impairment of endothelium-dependent relaxation to receptor- and nonreceptor-mediated agonists. Atherosclerosis may be accelerated in the apoE/LDL receptor-double-knockout mouse compared with the apoE-knockout strain alone. We speculate that other factors, such as the absence of LDL receptors, may contribute to the differences in the extent of atherosclerosis in these two models of hyperlipidemia.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Animals; Aorta, Thoracic; Aortic Diseases; Apolipoproteins E; Arteriosclerosis; Calcimycin; Calcium; Disease Models, Animal; Endothelium, Vascular; Enzyme Inhibitors; Female; Hypercholesterolemia; Ionophores; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle Relaxation; Nitric Oxide Synthase; Nitroarginine; Receptors, LDL; Superoxide Dismutase; Vasoconstrictor Agents

1997
Beta-migrating very low density lipoprotein attenuates endothelium-dependent relaxation in rabbit atherosclerotic aortas.
    Blood vessels, 1989, Volume: 26, Issue:5

    We studied the effects of beta-migrating very low density lipoprotein (beta-VLDL) on the vascular responses of isolated thoracic aortic preparations taken from normal and hypercholesterolemic rabbits. The endothelium-dependent relaxation induced by acetylcholine or adenosine triphosphate (ATP) was attenuated in the arteries from hypercholesterolemic rabbits that were fed a cholesterol-rich diet for 12 weeks. In these aortas, the lesional circumference of the atherosclerotic plaques (fatty streaks) was only 12.18 +/- 1.98%. The relaxation induced by the Ca2+ ionophore A23187 or nitroglycerin was not altered. Preincubation with beta-VLDL significantly inhibited the relaxation due to acetylcholine, ATP, or A23187, especially in the aortas of hypercholesterolemic rabbits. However, beta-VLDL did not alter the response to nitroglycerin. Preincubation with high density lipoprotein had no significant effect on vessel relaxation. These results indicated that endothelium-dependent relaxation was already inhibited in the early stages of atherosclerosis, and that the atherogenic lipoprotein, beta-VLDL, further inhibited endothelium-dependent relaxation in atherosclerotic aortas. It may be that beta-VLDL also plays a role in determining the level of vascular tonus in atherosclerosis.

    Topics: Acetylcholine; Adenosine Triphosphate; Animals; Aorta, Thoracic; Aortic Diseases; Arteriosclerosis; Calcimycin; Dose-Response Relationship, Drug; Endothelium, Vascular; Hypercholesterolemia; In Vitro Techniques; Lipoproteins, LDL; Male; Muscle Contraction; Muscle Relaxation; Nitric Oxide; Nitroglycerin; Norepinephrine; Rabbits

1989
Mechanisms of abnormal endothelium-dependent vascular relaxation in atherosclerosis: implications for altered autocrine and paracrine functions of EDRF.
    Blood vessels, 1989, Volume: 26, Issue:5

    The present studies were performed to determine if abnormal endothelium-dependent vascular relaxation in atherosclerosis is due to decreased production or release of endothelium-derived relaxing factor (EDRF) by atherosclerotic rabbit vessels or if atherosclerotic vessels are less sensitive to the relaxing effects of EDRF. EDRF release was quantified using two approaches, by the response of bioassay detector vessels and also by the activation of guanylate cyclase within cultured endothelial cells. Using these assays, atherosclerotic vessels were found to release significantly less EDRF than normal vessels in response to both receptor- and nonreceptor-mediated stimuli. Relaxations of normal and atherosclerotic vessels to luminally applied EDRF (derived from normal rabbit aortas stimulated by the calcium ionophore, A23187) and nitric oxide, a putative EDRF, were also studied. Atherosclerotic vessels were more sensitive to EDRF than normal vessels, and equally sensitive to nitric oxide. Additional studies performed in organ chambers failed to demonstrate augmented constriction of atherosclerotic vessels in response to acetylcholine in the presence or absence of methylene blue or LY83583, compounds which inhibit the effect of EDRF. We conclude that decreased EDRF release is the principal underlying mechanism responsible for abnormal endothelium-dependent vascular relaxation in atherosclerosis.

    Topics: Acetylcholine; Aminoquinolines; Animals; Aorta, Thoracic; Aortic Diseases; Arteriosclerosis; Biological Assay; Calcimycin; Enzyme Activation; Guanylate Cyclase; Humans; Methylene Blue; Nitric Oxide; Rabbits; Vasodilation

1989