calcein-am has been researched along with Glioblastoma* in 5 studies
5 other study(ies) available for calcein-am and Glioblastoma
Article | Year |
---|---|
Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation.
Solid lipid nanoparticles (SLNs) conjugated with tamoxifen (TX) and lactoferrin (Lf) were applied to carry anticancer carmustine (BCNU) across the blood-brain barrier (BBB) for enhanced antiproliferation against glioblastoma multiforme (GBM). BCNU-loaded SLNs with modified TX and Lf (TX-Lf-BCNU-SLNs) were used to penetrate a monolayer of human brain-microvascular endothelial cells (HBMECs) and human astrocytes and to target malignant U87MG cells. The surface TX and Lf on TX-Lf-BCNU-SLNs improved the characteristics of sustained release for BCNU. When compared with BCNU-loaded SLNs, TX-Lf-BCNU-SLNs increased the BBB permeability coefficient for BCNU about ten times. In addition, TX-BCNU-SLNs considerably promoted the fluorescent intensity of intracellular acetomethoxy derivative of calcein (calcein-AM) in HBMECs via endocytosis. However, the conjugated Lf could only slightly increase the fluorescence of calcein-AM. Moreover, the order of formulation in the inhibition to U87MG cells was TX-Lf-BCNU-SLNs>TX-BCNU-SLNs>Lf-BCNU-SLNs>BCNU-SLNs. TX-Lf-BCNU-SLNs can be effective in infiltrating the BBB and delivering BCNU to GBM for future chemotherapy application. Topics: Antineoplastic Agents; Astrocytes; Blood-Brain Barrier; Brain; Carmustine; Cell Line, Tumor; Delayed-Action Preparations; Drug Delivery Systems; Endothelial Cells; Fluoresceins; Glioblastoma; Humans; Lactoferrin; Lipids; Nanoparticles; Permeability; Tamoxifen | 2016 |
Mechanical and Morphological Analysis of Cancer Cells on Nanostructured Substrates.
Cancer metastasis is a major cause of cancer-induced deaths in patients. Mimicking nanostructures of an extracellular matrix surrounding cancer cells can provide useful clues for metastasis. This paper compares the morphology, proliferation, spreading, and stiffness of highly aggressive glioblastoma multiforme cancer cells and normal fibroblast cells seeded on a variety of ordered polymeric nanostructures (nanopillars and nanochannels). Both cell lines survive and proliferate on the nanostructured surface and show more similarity on nanostructured surfaces than on flat surfaces. Although both show similar stiffness on the nanochannel surface, glioblastomas are softer, spread to a larger area, and elongate less than fibroblasts. The nanostructured surfaces are useful for in vitro model of an extracellular matrix to study the cancer cell migratory phenotype. Topics: Acrylic Resins; Actins; Animals; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dimethylformamide; Ethidium; Extracellular Matrix; Fibroblasts; Fluorescein-5-isothiocyanate; Fluoresceins; Fluorescent Dyes; Glioblastoma; Humans; Indoles; Mice; Nanostructures; NIH 3T3 Cells | 2016 |
Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.
Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM. Topics: Analysis of Variance; Antigens, CD; Bone Density Conservation Agents; Cell Line, Tumor; Diphosphonates; Flow Cytometry; Fluoresceins; Glioblastoma; Humans; Imidazoles; Leukocytes, Mononuclear; Lymphocyte Activation; Receptors, Antigen, T-Cell, gamma-delta; T-Lymphocyte Subsets; Time Factors; Zoledronic Acid | 2014 |
Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro.
It has been reported that low-power laser irradiation (LLI) can modulate various biological processes including cell proliferation. Some reports suggest that LLI interferes with the cell cycle and inhibits cell proliferation, while others suggest that LLI has a stimulatory effect. Mechanisms underlying the effects of LLI remain unclear. Since the effects of LLI on cancer cells are not well understood, with the aim of developing an LLI therapy for malignant glioblastoma, we investigated the effects of LLI on the cell proliferation of the human-derived glioblastoma cell line A-172. Glioblastoma cell cultures were irradiated with a diode laser at a wavelength of 808 nm and the effects on cell viability and proliferation were examined. Cell counting at 24 and 48 h after irradiation showed that LLI (at 18, 36 and 54 J/cm(2)) suppressed proliferation of A-172 cells in a fluence-dependent manner (irradiation for 20, 40 and 60 min). A reduction in the number of viable cells was also demonstrated by a fluorescent marker for viable cells, calcein acetoxymethylester (calcein-AM). The reduction in cell viability was not associated with morphological changes in the cells or with necrotic cell death as demonstrated by propidium iodide staining. LLI also had little effect on cell proliferation as shown by 5-bromo-2'-deoxyuridine staining. We discuss possible mechanisms underlying the suppressive effect of 808-nm LLI on the viability of human-derived glioblastoma A-172 cells. Topics: Bromodeoxyuridine; Cell Count; Cell Line, Tumor; Cell Proliferation; Central Nervous System Neoplasms; DNA; Fluoresceins; Fluorescent Dyes; Glioblastoma; Humans; Low-Level Light Therapy | 2012 |
Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells.
The inhibition of kinesin Eg5 by small molecules such as monastrol is currently evaluated as an approach to develop a novel class of antiproliferative drugs for the treatment of malignant tumours. Therefore, we studied the effects of the new monastrol analogues enastron, dimethylenastron and vasastrol VS-83 on the proliferation of human glioblastoma cells in the kinetic crystal violet assay. Compared to monastrol, the new cell cycle specific compounds showed an at least one order of magnitude higher anti proliferative activity against U-87 MG, U-118 MG, and U-373 MG glioblastoma cells. The compounds were neither inactivated by hydrolysis nor by binding to serum proteins. Moreover, we demonstrated the characteristic monoaster formation after incubation of cells with the new compounds by confocal laser scanning microscopy. We also showed that the arrangement of beta-actin and tubulin, vital components of the cyto-skeleton of mitotic and quiescent cells, were not affected by the new compounds. Due to the necessity of overcoming the blood-brain barrier in the treatment of brain tumours, we investigated if the new monastrol analogues are modulators or substrates of the p-glycoprotein (p-gp) 170 by a flow cytometric calcein-AM efflux assay. The tested compounds showed no modulating effects on the p-gp function. With respect to the treatment of primary and secondary CNS tumours, the results of our experiments suggest that the new monastrol analogues represent an interesting class of potential anticancer drugs, predicted to be less neurotoxic in comparison to classical tubulin inhibitors. Topics: Acridines; Antineoplastic Agents, Phytogenic; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cysteine; Dose-Response Relationship, Drug; Flow Cytometry; Fluoresceins; Glioblastoma; Humans; Insecticides; Kinesins; Molecular Structure; Paclitaxel; Pyrimidines; Quinazolines; Rotenone; Spindle Apparatus; Tetrahydroisoquinolines; Thiones; Time Factors; Tubulin; Tubulin Modulators; Vinblastine | 2007 |