calcein-am and Glaucoma

calcein-am has been researched along with Glaucoma* in 3 studies

Other Studies

3 other study(ies) available for calcein-am and Glaucoma

ArticleYear
Neuroprotective effect of lignans extracted from Eucommia ulmoides Oliv. on glaucoma-related neurodegeneration.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2016, Volume: 37, Issue:5

    Glaucoma is a progressive neurodegenerative disease, characterized by retinal ganglion cells (RGCs) and axon degeneration. The development of neuroprotective drug is required for improving the efficiency of glaucoma treatment. Eucommia ulmoides Oliv. has been used as a source of traditional medicine and as a beneficial health food. Lignans is one of the main bioactive components of Eucommia ulmoides. Here, we show that lignans protects RGCs against oxidative stress-induced injury in vitro. Moreover, lignans exerts neuroprotective effect on glaucoma-associated optic neuropathy in glaucomatous rats. Lignans treatment could improve oxidative stress response in RGCs and retinas of glaucomatous rats. Lignans plays an anti-oxidative stress role via the activation of AMPK signaling. This study provides evidence that lignans possesses protective effect on glaucoma-associated optic neuropathy. Lignans might be an alternative for the prevention and treatment of glaucomatous neurodegeneration.

    Topics: Animals; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Eucommiaceae; Fluoresceins; Gene Expression Regulation; Glaucoma; Hydrogen Peroxide; Lignans; Male; Neuroprotective Agents; Optic Nerve Diseases; Phosphopyruvate Hydratase; Rats; Rats, Wistar; Retinal Ganglion Cells; RNA, Long Noncoding; Signal Transduction; Sincalide; Tubulin

2016
Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells.
    Molecular vision, 2011, Volume: 17

    We investigated the potential short and long-term effects in cultured human trabecular meshwork (TM) cells of various topical glaucoma formulations containing different preservatives.. We tested the fixed combination medications 0.004% travoprost plus 0.5% timolol preserved with either 0.015% benzalkonium chloride (BAK; DuoTrav®), or with 0.001% polyquad (PQ; DuoTrav(®) BAK-free); and 0.005% latanoprost plus 0.5% timolol preserved with 0.020% BAK (Xalacom(®)). Also tested was a range of BAK concentrations (0.001%-0.020%) in balanced salt solution (BSS). Cells were treated for 25 min at 37 °C with solutions diluted 1:10 and 1:100 to mimic the reduced penetration of topical preparations to the anterior chamber. The percentage of live cells was determined immediately after treatment through the uptake of the fluorescent vital dye calcein-AM. To determine any long-term effects, we assayed release of matrix metalloproteinase 9 (MMP-9) and apoptosis 24 h after treatments.. BAK demonstrated a dose-dependent reduction in TM cell viability, ranging from 71±5% live cells at 0.001% BAK (diluted 1:10) to 33±3% live cells at 0.020% BAK (diluted 1:10). Travoprost (0.004%) plus 0.5% timolol preserved with 0.015% BAK had statistically fewer live TM cells (79±7%) than the same preparation preserved with 0.001% polyquad® (PQ; 93±1%; p<0.001). Latanoprost plus timolol preserved with 0.020% BAK (29±9% live cells) was similar to the 0.020% BAK (33±3%) treatment. However, travoprost plus timolol preserved in 0.015% BAK had significantly more live cells (83±12%) than the 1:10 dilution of 0.015% BAK (49±10%). We also found 0.020% BAK (diluted 1:100) resulted in elevated levels of extracellular MMP-9 at 24 h.. These results demonstrate that the substitution of the preservative BAK from topical ophthalmic drugs results in greater in vitro viability of TM cells. Travoprost with timolol, but not latanoprost with timolol, countered some of the toxic BAK effects. BAK treatment appeared to cause elevated levels of MMP-9, a matrix metalloproteinase implicated in the pathogenesis of glaucoma.

    Topics: Antihypertensive Agents; Apoptosis; Benzalkonium Compounds; Cell Survival; Cells, Cultured; Cloprostenol; Drug Combinations; Fluoresceins; Glaucoma; Humans; Latanoprost; Matrix Metalloproteinase 9; Polymers; Preservatives, Pharmaceutical; Prostaglandins F, Synthetic; Timolol; Trabecular Meshwork; Travoprost

2011
Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage.
    Investigative ophthalmology & visual science, 2007, Volume: 48, Issue:10

    To determine whether oxidative adduct formation or heme oxygenase-1 (HO-1) expression are altered in retinal ganglion cell (RGC) cultures exposed to elevated hydrostatic pressure and in a mouse model of glaucoma.. Cultured RGC-5 cells were subjected to 0, 30, 60, or 100 mm Hg hydrostatic pressure for 2 hours, and the cells were harvested. Parallel experiments examined the recovery from this stress, the effect of direct 4-hydroxy-2-nonenal (HNE) treatment, and the effect of pretreatment with resveratrol or quercetin. Mice were anesthetized and intraocular pressure was increased to 30, 60, or 100 mm Hg for 1 hour; then the retinas were harvested. HNE adduct formation and HO-1 expression were assessed by immunocytochemistry and immunoblotting.. Increases of HNE-protein adducts (up to 5-fold) and HO-1 expression (up to 2.5 fold) in pressure-treated RGC-5 cells were dose dependent. During recovery experiments, HNE-protein adducts continued to increase for up to 10 hours; in contrast, HO-1 expression decreased immediately. HNE, at a concentration as low as 5 muM, led to neurotoxicity in RGC-5 cells. HNE adducts and HO-1 expression increased in the mouse retina and optic nerve after acute IOP elevation up to 5.5-fold and 2-fold, respectively. Antioxidant treatment reduced the oxidative stress level in pressure-treated RGC-5 cells.. This study demonstrates that oxidative stress is an early event in hydrostatic pressure/IOP-induced neuronal damage. These findings support the view that oxidative damage contributes early to glaucomatous optic neuropathy.

    Topics: Aldehydes; Animals; Apoptosis; Blotting, Western; Cell Line, Transformed; Cell Survival; Cells, Cultured; Disease Models, Animal; Fluoresceins; Fluorescent Antibody Technique, Indirect; Glaucoma; Heme Oxygenase-1; Hydrostatic Pressure; Intraocular Pressure; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; Nuclear Proteins; Optic Nerve Diseases; Oxidative Stress; Rats; Retinal Diseases; Retinal Ganglion Cells

2007