calca-protein--human and Obesity--Morbid

calca-protein--human has been researched along with Obesity--Morbid* in 1 studies

Other Studies

1 other study(ies) available for calca-protein--human and Obesity--Morbid

ArticleYear
Glucose-dependent insulinotropic polypeptide (GIP) induces calcitonin gene-related peptide (CGRP)-I and procalcitonin (Pro-CT) production in human adipocytes.
    The Journal of clinical endocrinology and metabolism, 2011, Volume: 96, Issue:2

    Increased plasma levels of glucose-dependent insulinotropic polypeptide (GIP), calcitonin CT gene-related peptide (CGRP)-I, and procalcitonin (Pro-CT) are associated with obesity. Adipocytes express functional GIP receptors and the CT peptides Pro-CT and CGRP-I. However, a link between GIP and CT peptides has not been studied yet.. The objective of the study was the assessment of the GIP effect on the expression and secretion of CGRP-I and Pro-CT in human adipocytes, CGRP-I and CT gene expression in adipose tissue (AT) from obese vs. lean subjects, and plasma levels of CGRP-I and Pro-CT after a high-fat meal in obese patients.. Human preadipocyte-derived adipocytes, differentiated in vitro, were treated with GIP. mRNA expression and protein secretion of CGRP-I and Pro-CT were measured. Human CGRP-I and CT mRNA expression in AT and CGRP-I and Pro-CT plasma concentrations were assessed.. Treatment with 1 nm GIP induced CGRP-I mRNA expression 6.9 ± 1.0-fold (P < 0.001 vs. control) after 2 h and CT gene expression 14.0 ± 1.7-fold (P < 0.001 vs. control) after 6 h. GIP stimulated CGRP-I secretion 1.7 ± 0.2-fold (P < 0.05 vs. control) after 1 h. In AT samples of obese subjects, CGRP-I mRNA expression was higher in sc AT (P < 0.05 vs. lean subjects), whereas CT expression was higher in visceral AT (P < 0.05 vs. lean subjects). CGRP-I plasma levels increased after a high-fat meal in obese patients.. GIP induces CGRP-I and CT expression in human adipocytes. Therefore, elevated Pro-CT and CGRP-I levels in obesity might result from GIP-induced Pro-CT and CGRP-I release in AT and might be triggered by a high-fat diet. How these findings relate to the metabolic complications of obesity warrants further investigations.

    Topics: Adipocytes; Adult; Calcitonin; Calcitonin Gene-Related Peptide; Cell Differentiation; Cells, Cultured; Cyclic AMP; Dietary Fats; Dose-Response Relationship, Drug; Female; Gastric Inhibitory Polypeptide; Humans; Male; Middle Aged; Obesity; Obesity, Morbid; Protein Precursors; RNA, Messenger

2011