cajanine and Disease-Models--Animal

cajanine has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for cajanine and Disease-Models--Animal

ArticleYear
Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms.
    European journal of medicinal chemistry, 2021, Nov-15, Volume: 224

    The Staphylococcus aureus can switch to a transient genotype-invariant dormancy, known as a persister, to survive treatment with high doses of antibiotics. This transient persister is an important reason underlying its resistance. There is an urgent need to find new antibacterial agents capable of eradicating methicillin-resistant S. aureus (MRSA) persisters. In this study, 37 new derivatives of cajaninstilbene acid (CSA) were designed and synthesized, and their biological activity against MRSA persisters was evaluated. Most of the newly synthesized derivatives exhibit more potent antimicrobial properties against S. aureus and MRSA than CSA itself, and 23 of the 37 derivatives show a tendency to eradicate MRSA persisters. A representative compound (A6) was demonstrated to target bacterial cell membranes. It eradicated the adherent biofilm of MRSA in a concentration dependent manner, and showed a synergistic antibacterial effect with piperacilin. In a model mouse abscess caused by MRSA persisters, A6 effectively reduced the bacterial load in vivo. These results indicate that A6 is a potential candidate for treatment of MRSA persister infections.

    Topics: Animals; Anti-Bacterial Agents; Biofilms; Cell Survival; Cell Wall; Disease Models, Animal; Methicillin-Resistant Staphylococcus aureus; Mice; Microbial Sensitivity Tests; RAW 264.7 Cells; Salicylates; Skin Diseases; Staphylococcal Infections; Staphylococcus aureus; Stilbenes; Structure-Activity Relationship

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020