c-peptide has been researched along with Pain* in 4 studies
1 review(s) available for c-peptide and Pain
Article | Year |
---|---|
[C-peptide physiological effects].
In the recent years there were numerous evidences that C-peptide, which was previously considered as a product of insulin biosynthesis, is one of the key regulators of physiological processes. C-peptide via heterotrimeric G(i/o) protein-coupled receptors activates a wide range of intracellular effector proteins and transcription factors and, thus, controls the inflammatory and neurotrophic processes, pain sensitivity, cognitive function, macro- and microcirculation, glomerular filtration. These effects of C-peptide are mainly expressed in its absolute or relative deficiency occurred in type 1 diabetes mellitus and they are less pronounced when the level of C-peptide is close to normal. Replacement therapy with C-peptide prevents many complications of type 1 diabetes, such as atherosclerosis, diabetic peripheral neuropathy, and nephropathy. C-peptide interacts with the insulin hexamer complexes and induces their dissociation and, as a result, regulates the functional activity of the insulin signaling system. At the same time, C-peptide at the concentrations above physiological may demonstrate pro-inflammatory effects on the endothelial cells and cause atherosclerotic changes in the vessels, which should be considered in the study of pathogenic mechanisms of complications of type 2 diabetes mellitus, where the level of C peptide is increased, as well as in the development of approaches for C-peptide application in clinic. This review is devoted contemporary achievements and unsolved problems in the study of C-peptide, as an important regulator of physiological and biochemical processes. Topics: C-Peptide; Cell Communication; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Endothelial Cells; Humans; Inflammation; Insulin; Microcirculation; Pain; Signal Transduction | 2013 |
1 trial(s) available for c-peptide and Pain
Article | Year |
---|---|
C-peptide improves autonomic nerve function in IDDM patients.
In order to determine the possible influence of C-peptide on nerve function, 12 insulin-dependent diabetic (IDDM) patients with symptoms of diabetic polyneuropathy were studied twice under euglycaemic conditions. Tests of autonomic nerve function (respiratory heart rate variability, acceleration and brake index during tilting), quantitative sensory threshold determinations, nerve conduction studies and clinical neurological examination were carried out before and during a 3-h i.v. infusion of either C-peptide (6 pmol.kg-1.min-1) or physiological saline solution in a double-blind study. Plasma C-peptide concentrations increased from 0.11 +/- 0.02 to 1.73 +/- 0.04 nmol/l during C-peptide infusion. Clinical neurological examination quantitative sensory threshold evaluations and nerve conduction measurements failed to detect significant changes between C-peptide and saline study periods. Respiratory heart rate variability increased significantly from 13 +/- 1 to 20 +/- 2% during C-peptide infusion (p < 0.001), reaching normal values in five of the subjects; control studies with saline infusion did not alter the heart rate variability (basal, 14 +/- 2; saline, 15 +/- 2%). A reduced brake index value was found in seven patients and increased significantly during the C-peptide infusion period (4.6 +/- 1.0 to 10.3 +/- 2.2%, p < 0.05) but not during saline infusion (5.9 +/- 2 to 4.1 +/- 1.1%, NS). It is concluded that short-term (3-h) infusion of C-peptide in physiological amounts may improve autonomic nerve function in patients with IDDM. Topics: Adult; Autonomic Pathways; Blood Glucose; Blood Pressure; Body Mass Index; C-Peptide; Diabetes Mellitus, Type 1; Double-Blind Method; Female; Glycated Hemoglobin; Heart Rate; Hot Temperature; Humans; Insulin; Male; Middle Aged; Pain; Smoking; Temperature; Vibration | 1996 |
2 other study(ies) available for c-peptide and Pain
Article | Year |
---|---|
An unconscious man with profound drug-induced hypoglycaemia.
Hypoglycaemia has been reported as an unusual complication of tramadol use and in a few cases of tramadol poisoning, but the exact mechanism is not known.. An ambulance crew was dispatched to an unconscious 46-year old man. A glucometer point-of-care measurement revealed a profound hypoglycaemia (1.9 mmol/L). Treatment with intravenous glucose was started and the patient was transported to the hospital. The patient had several episodes of pulseless electrical activity requiring cardiopulmonary resuscitation in the ambulance and upon arrival in the hospital. Despite continuous glucose infusion the hypoglycaemia was difficult to correct during the next few hours and the patient developed hypokalaemia. Further investigation to identify the cause of hypoglycaemia revealed that insulin and C-peptide were inappropriately raised. A toxicological investigation revealed the presence of tramadol and its metabolites in lethal concentrations. Also acetaminophen, ibuprofen and lormetazepam were present. Ethanol screening was negative (< 0.1 g/L) and no sulfonylurea were detected. The patient developed multiple organ failure, but eventually recovered.. The hypoglycaemia was caused by inappropriate stimulation of insulin secretion in a patient intoxicated with tramadol. The sudden hypokalaemia was caused by a massive intracellular shift of potassium in response to the hyperinsulinemia, triggered by the intravenous administration of glucose.. To our knowledge, we are the first to document a significant rise in endogenous insulin production in a hypoglycaemic patient presenting with tramadol intoxication. Our observation suggests that hyperinsulinemia could be the cause of the hypoglycaemia associated with tramadol use. Topics: Analgesics, Opioid; Blood Glucose; C-Peptide; Glucose; Humans; Hypoglycemia; Insulin; Male; Middle Aged; Pain; Tramadol | 2020 |
Nocistatin and prepro-nociceptin/orphanin FQ 160-187 cause nociception through activation of Gi/o in capsaicin-sensitive and of Gs in capsaicin-insensitive nociceptors, respectively.
Nociceptin/orphanin FQ (N/OFQ), nocistatin, and prepro-N/OFQ 160-187 (C-peptide) are all derived from the same precursor protein. We examine the pharmacological mechanisms of nocistatin- and C-peptide-induced pronociceptive responses in a novel algogenic-induced nociceptive flexion test in mice. The intraplantar (i.pl.) injection of nocistatin- and C-peptide induced pronociceptive responses in a range of 0.01 to 10 or 1 pmol, respectively, which showed 100- to 1000-fold less potent effects than the N/OFQ. The nociceptive effects of both peptides were not affected by 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazole-2-one (J-113397) (i.pl.), an N/OFQ receptor antagonist, indicating that they are mediated by a novel mechanism independent of activation of N/OFQ receptor. Like N/OFQ, nocistatin-induced nociception was abolished by i.pl. injection of pertussis toxin, phospholipase C inhibitor, or CP-99994, a neurokinin 1 receptor antagonist, indicating that nocistatin may elicit nociception through a substance P release from nociceptor endings via activation of Gi/o and phospholipase C. The nociception was abolished by neonatal pretreatment (s.c.) with capsaicin or by i.t. pretreatment with CP-99994, but not MK-801 (i.t.), an N-methyl-d-aspartate receptor antagonist. In contrast, C-peptide-induced nociception was attenuated by the pretreatment with antisense oligodeoxynucleotide for Galphas (i.t.) and with KT-5720 (i.pl.), a cyclic AMP-dependent protein kinase inhibitor, but not with pertussis toxin. The nociception was neither attenuated by neonatal capsaicin nor by i.t. injection with CP-99994, but it was attenuated by i.t. injection with MK-801. These results suggest that nocistatin and C-peptide derived from prepro-N/OFQ stimulate distinct nociceptive fibers through different in vivo signaling mechanisms. Topics: Analgesics, Opioid; Animals; C-Peptide; Capsaicin; GTP-Binding Protein alpha Subunits, Gi-Go; GTP-Binding Protein alpha Subunits, Gs; Male; Mice; Nociceptin; Nociceptors; Opioid Peptides; Pain; Pain Measurement; Peptide Fragments; Signal Transduction; Vasodilator Agents | 2003 |