byl719 has been researched along with Carcinoma--Pancreatic-Ductal* in 3 studies
3 other study(ies) available for byl719 and Carcinoma--Pancreatic-Ductal
Article | Year |
---|---|
Survival of pancreatic cancer cells lacking KRAS function.
Activating mutations in the proto-oncogene KRAS are a hallmark of pancreatic ductal adenocarcinoma (PDAC), an aggressive malignancy with few effective therapeutic options. Despite efforts to develop KRAS-targeted drugs, the absolute dependence of PDAC cells on KRAS remains incompletely understood. Here we model complete KRAS inhibition using CRISPR/Cas-mediated genome editing and demonstrate that KRAS is dispensable in a subset of human and mouse PDAC cells. Remarkably, nearly all KRAS deficient cells exhibit phosphoinositide 3-kinase (PI3K)-dependent mitogen-activated protein kinase (MAPK) signaling and induced sensitivity to PI3K inhibitors. Furthermore, comparison of gene expression profiles of PDAC cells retaining or lacking KRAS reveal a role of KRAS in the suppression of metastasis-related genes. Collectively, these data underscore the potential for PDAC resistance to even the very best KRAS inhibitors and provide insights into mechanisms of response and resistance to KRAS inhibition. Topics: Animals; Antineoplastic Agents; Benzimidazoles; Carcinoma, Pancreatic Ductal; DNA Copy Number Variations; Humans; Immunoblotting; Indazoles; Mice; Morpholines; Pancreatic Neoplasms; Phenylurea Compounds; Piperidines; Proto-Oncogene Mas; Proto-Oncogene Proteins p21(ras); Purines; Pyrimidines; Pyrimidinones; Quinazolinones; Sulfonamides; Thiazoles | 2017 |
Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma.
Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC). Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored.. Erlotinib paired with PI3K inhibitor (BYL719) was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059) plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER) cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade.. Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib.. The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Pancreatic Ductal; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Cell Proliferation; Drug Resistance, Neoplasm; Drug Synergism; Erlotinib Hydrochloride; Flavonoids; Humans; Imidazoles; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinolines; Thiazoles; TOR Serine-Threonine Kinases | 2016 |
Cotargeting of epidermal growth factor receptor and PI3K overcomes PI3K-Akt oncogenic dependence in pancreatic ductal adenocarcinoma.
PI3K-Akt is overexpressed in 50% to 70% of pancreatic ductal adenocarcinoma (PDAC). The hypothesis of this study is that PI3K and EGFR coinhibition may be effective in PDAC with upregulated PI3K-Akt signaling.. Multiple inhibitors were tested on five PDAC cell lines. EGFR inhibitor (EGFRi)-resistant cell lines were found to have significantly overexpressed AKT2 gene, total Akt, and pAkt. In vitro erlotinib-resistant (ER) cell models (BxPC-ER and PANC-ER) with highly constitutively active PI3K-Akt were developed. These and their respective parent cell lines were tested for sensitivity to erlotinib, IGFIR inhibitor NVP-AEW541 (AEW), and PI3K-alpha inhibitor NVP-BYL719 (BYL), alone or in combination, by RTK-phosphoarray, Western blotting, immunofluorescence, qRT-PCR, cell proliferation, cell cycle, clonogenic, apoptosis, and migration assays. Erlotinib plus BYL was tested in vivo.. Erlotinib acted synergistically with BYL in BxPC-ER (synergy index, SI = 1.71) and PANC-ER (SI = 1.44). Treatment of ER cell lines showing upregulated PI3K-Akt with erlotinib plus BYL caused significant G1 cell-cycle arrest (71%, P < 0.001; 58%, P = 0.003), inhibition of colony formation (69% and 72%, both P < 0.001), and necrosis and apoptosis (75% and 53%, both P < 0.001), more so compared with parent cell lines. In primary patient-derived tumor subrenal capsule (n = 90) and subcutaneous (n = 22) xenografts, erlotinib plus BYL significantly reduced tumor volume (P = 0.005). Strong pEGFR and pAkt immunostaining (2+/3+) was correlated with high and low responses, respectively, to both erlotinib and erlotinib plus BYL.. PDAC with increased expression of the PI3K-Akt pathway was susceptible to PI3K-EGFR coinhibition, suggesting oncogenic dependence. Erlotinib plus BYL should be considered for a clinical study in PDAC; further evaluation of pEGFR and pAkt expression as potential positive and negative predictive biomarkers is warranted. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Pancreatic Ductal; Cell Cycle; Cell Movement; Cell Proliferation; Drug Synergism; ErbB Receptors; Erlotinib Hydrochloride; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Mice; Mice, Inbred NOD; Mice, SCID; Pancreatic Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrimidines; Pyrroles; Quinazolines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Thiazoles; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2014 |