bx-471 and Fibrosis

bx-471 has been researched along with Fibrosis* in 6 studies

Reviews

1 review(s) available for bx-471 and Fibrosis

ArticleYear
Fibrogenesis in kidney transplantation: potential targets for prevention and therapy.
    Transplantation, 2009, Nov-27, Volume: 88, Issue:10

    Kidney allograft fibrosis results from a reactive process mediated by humoral and cellular events and the activation of transforming growth factor beta1. It is a process that involves both parenchymal and graft infiltrating cells and can lead to organ failure if injury persists or if the response to injury is excessive. In this review, we will address the role of preventive and therapeutic strategies that target kidney allograft fibrogenesis. We conclude that in addition to preventive strategies, therapies based on bone morphogenetic protein 7, hepatocyte growth factor, connective tissue growth factor, and pirfenidone have shown promising results in preclinical studies. Clinical trials are needed to examine the effect of these therapies on long-term outcomes.

    Topics: Chemokines; Fibrosis; Graft Rejection; Humans; Immunity, Humoral; Immunosuppressive Agents; Kidney Transplantation; Phenylurea Compounds; Piperidines; Receptors, Chemokine; Sirolimus; T-Lymphocytes; Transforming Growth Factor beta

2009

Other Studies

5 other study(ies) available for bx-471 and Fibrosis

ArticleYear
Beneficial effects of CCR1 blockade on the progression of chronic renal allograft damage.
    American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2007, Volume: 7, Issue:3

    The biology of chemokines and their receptors have been linked to the development of chronic allograft damage. Effects of CCR1 antagonist BX 471 were studied in a Fischer to Lewis renal transplantation model at days 10, 21 and 42 after transplantation. BX 471 treatment did not effectively reduce signs of acute rejection at day 10 but significantly improved allograft function and morphology at day 21 posttransplantation. When therapy was initiated on day 21 after transplantation, glomerulosclerosis and tubulointerstitial fibrosis were significantly inhibited by day 42 posttransplantation. Parallel decrease in infiltrating and proliferating mononuclear cells (ED1, CD8 and Ki67) was observed in treated allografts. Expression of acute phase reactive and proinflammatory genes (HO-1, osteopontin) and molecules associated with fibrosis (PAI-1, TGF-beta1, biglycan) was downregulated at day 21; reduced collagen deposition was observed, parallel to a significant lower number of alpha-SMA+ interstitial myofibroblasts. In situ hybridization demonstrated that biglycan expression was reduced following CCR1 blockade in interstitium of treated allografts. CCR1 antagonism was found to inhibit CCL5-induced secretion of biglycan by macrophages in vitro. CCR1 blockade significantly inhibited development and progression of chronic allograft damage. CCR1 antagonists may represent a therapeutic option for chronic inflammation and fibrosis in renal grafts.

    Topics: Animals; Biglycan; Disease Progression; Extracellular Matrix Proteins; Fibrosis; Graft Rejection; Graft Survival; Kidney Failure, Chronic; Kidney Transplantation; Lymphocyte Activation; Macrophages; Models, Animal; Phenylurea Compounds; Piperidines; Proteoglycans; Rats; Receptors, CCR1; Receptors, Chemokine; RNA, Messenger; T-Lymphocytes

2007
Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice.
    The American journal of pathology, 2007, Volume: 171, Issue:3

    Urinary tract obstruction during renal development leads to tubular apoptosis, tubular atrophy, and interstitial fibrosis. Epithelial to mesenchymal transition (EMT) has been proposed as a key mechanism of myofibroblast accumulation in renal fibrosis. We studied the interplay of leukocyte infiltration, tubular apoptosis, and EMT in renal fibrosis induced by unilateral ureteral obstruction (UUO) in neonatal mice. We show that leukocytes mediate tubular apoptosis and EMT in the developing kidney with obstructive nephropathy. Blocking leukocyte recruitment by using the chemokine receptor-1 antagonist BX471 protected against tubular apoptosis and interstitial fibrosis, as evidenced by reduced monocyte influx, a decrease in EMT, and attenuated collagen deposition. EMT was rapidly induced within 24 hours after UUO along with up-regulation of the transcription factors Snail1 and Snail2/Slug, preceding the induction of alpha-smooth muscle actin and vimentin. In the presence of BX471, the expression of chemokines, as well as of Snail1 and Snail2/Slug, in the obstructed kidney was completely attenuated. This was associated with reduced macrophage and T-cell infiltration, tubular apoptosis, and interstitial fibrosis in the developing kidney. Our findings provide evidence that leukocytes induce EMT and renal fibrosis after UUO and suggest that chemokine receptor-1 antagonism may prove beneficial in obstructive nephropathy.

    Topics: Actins; Animals; Animals, Newborn; Apoptosis; Chemokines; Epithelium; Fibrosis; Kidney Tubules; Leukocytes; Macrophages; Mesoderm; Mice; Mice, Inbred C57BL; Phenylurea Compounds; Piperidines; Receptors, Chemokine; Snail Family Transcription Factors; Transcription Factors; Ureter

2007
Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice.
    Journal of the American Society of Nephrology : JASN, 2004, Volume: 15, Issue:6

    Slowly progressive renal injury is the major cause for ESRD. The model of progressive immune complex glomerulonephritis in autoimmune MRL(lpr/lpr) mice was used to evaluate whether chemokine receptor CCR1 blockade late in the disease course can affect progression to renal failure. Mice were treated with subcutaneous injections of either vehicle or BX471, a nonpeptide CCR1 antagonist, three times a day from week 20 to 24 of age [corrected]. BX471 improved blood urea nitrogen levels (BX471, 35.1 +/- 5.3; vehicle, 73.1 +/- 39.6 mg/dl; P < 0.05) and reduced the amount of ERHR-3 macrophages, CD3 lymphocytes, Ki-67 positive proliferating cells, and ssDNA positive apoptotic cells in the interstitium but not in glomeruli. Cell transfer studies with fluorescence-labeled T cells that were pretreated with either vehicle or BX471 showed that BX471 blocks macrophage and T cell recruitment to the renal interstitium of MRL(lpr/lpr) mice. This was associated with reduced renal expression of CC chemokines CCL2, CCL3, CCL4, and CCL5 and the chemokine receptors CCR1, CCR2, and CCR5. Furthermore, BX471 reduced the extent of interstitial fibrosis as evaluated by interstitial smooth muscle actin expression and collagen I deposits, as well as mRNA expression for collagen I and TGF-beta. BX471 did not affect serum DNA autoantibodies, proteinuria, or markers of glomerular injury in MRL(lpr/lpr) mice. This is the first evidence that, in advanced chronic renal injury, blockade of CCR1 can halt disease progression and improve renal function by selective inhibition of interstitial leukocyte recruitment and fibrosis.

    Topics: Animals; Autoantibodies; Blood Urea Nitrogen; CD3 Complex; CD8-Positive T-Lymphocytes; Chemokines; Disease Progression; DNA; DNA, Single-Stranded; Fibrosis; Glomerulonephritis; In Situ Hybridization; Ki-67 Antigen; Kidney; Leukocytes; Lupus Nephritis; Lymphocytes; Macrophages; Mice; Mice, Inbred MRL lpr; Microscopy, Fluorescence; Phenylurea Compounds; Piperidines; Receptors, CCR1; Receptors, Chemokine; Renal Insufficiency; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; T-Lymphocytes; Time Factors; Transforming Growth Factor beta; Transforming Growth Factor beta1

2004
CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome.
    Kidney international, 2004, Volume: 66, Issue:6

    CC chemokines mediate leukocyte infiltration into inflamed tissue. We have recently shown that blockade of the CC chemokine receptor CCR1 reduces interstitial inflammation and fibrosis in murine obstructive nephropathy. However, it is not known whether CCR 1 blockade is protective in progressive renal injury associated with severe proteinuria. We therefore studied the effect of the small-molecule CCR1 antagonist BX471 in a murine model of adriamycin-induced focal segmental glomerulosclerosis (FSGS) with nephrotic syndrome and progressive interstitial inflammation and fibrosis.. Adriamycin nephropathy with persistent proteinuria was induced in male BALB/c mice by two intravenous injections of adriamycin (13 mg/kg) at day 0 and 14. BX471 treatment was started at day 14 when proteinuria and interstitial inflammation had developed. At 6 weeks, renal histology was studied by morphometry and immunohistochemistry.. At week 6, adriamycin-treated mice showed FSGS, associated with tubulointerstitial injury consisting of tubular dilation and atrophy, interstitial leukocyte infiltration, and fibrosis. The mRNA expression of CCR1 and CC chemokines, including the CCR1 ligands CCL3 (MIP-1alpha) and CCL5 (RANTES), was up-regulated in diseased kidneys, with a prominent interstitial expression of CCL5. Compared to vehicle-treated controls BX471 significantly reduced the amount of macrophages and T lymphocytes in interstitial lesions by 51% and 22%, respectively. Markers of renal fibrosis such as interstitial fibroblasts (48%) and interstitial volume (23%) were significantly reduced by BX471 treatment. In contrast, the extent of proteinuria and glomerular sclerosis was not affected by BX471 treatment.. Blockade of CCR1 substantially reduced interstitial leukocyte accumulation and the subsequent renal fibrosis in a murine model of nephrotic syndrome and FSGS. These findings support a role for CCR1 in interstitial leukocyte recruitment and suggest that CCR1 blockade might be a new therapeutic strategy in progressive nephropathies such as FSGS.

    Topics: Animals; Antibiotics, Antineoplastic; Chemokines; Doxorubicin; Fibrosis; Glomerulosclerosis, Focal Segmental; Kidney; Leukocytes; Male; Mice; Mice, Inbred BALB C; Nephritis, Interstitial; Nephrotic Syndrome; Phenylurea Compounds; Piperidines; Proteinuria; Receptors, CCR1; Receptors, Chemokine

2004
A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation.
    The Journal of clinical investigation, 2002, Volume: 109, Issue:2

    The expression of chemokines and their receptors is thought to contribute to leukocyte infiltration and progressive renal fibrosis after unilateral ureter obstruction (UUO). We hypothesized that blocking the chemokine receptor CCR1 using the nonpeptide antagonist BX471 could reduce leukocyte infiltration and renal fibrosis after UUO. UUO kidneys from BX471-treated mice (day 0-10 and day 6-10) revealed a 40-60% reduction of interstitial macrophage and lymphocyte infiltrate compared with controls. Treated mice also showed a marked reduction of CCR1 and CCR5 mRNA levels, and FACS analysis showed a comparable reduction of CD8+/CCR5+ T cells. Markers of renal fibrosis, such as interstitial fibroblasts, interstitial volume, mRNA and protein expression for collagen I, were all significantly reduced by BX471-treatment compared with vehicle controls. By contrast treatment was ineffective when the drug was supplied only from days 0 to 5. In summary, blockade of CCR1 substantially reduces cell accumulation and renal fibrosis after UUO. Most interestingly, late onset of treatment is also effective. We therefore conclude that CCR1 blockade may represent a new therapeutic strategy for reducing cellular infiltration and renal fibrosis as major factors in the progression to end-stage renal failure.

    Topics: Animals; Calcium; Cell Line; Cell Movement; Cytosol; Fibrosis; Humans; Kidney Diseases; Kidney Tubules; Leukocytes; Ligation; Mice; Mice, Inbred C57BL; Phenylurea Compounds; Piperidines; Protein Binding; Receptors, CCR1; Receptors, Chemokine; Ureter

2002