bwa-4c and Peritonitis

bwa-4c has been researched along with Peritonitis* in 3 studies

Other Studies

3 other study(ies) available for bwa-4c and Peritonitis

ArticleYear
SAR studies on curcumin's pro-inflammatory targets: discovery of prenylated pyrazolocurcuminoids as potent and selective novel inhibitors of 5-lipoxygenase.
    Journal of medicinal chemistry, 2014, Jul-10, Volume: 57, Issue:13

    The anticarcinogenic and anti-inflammatory properties of curcumin have been extensively investigated, identifying prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), key enzymes linking inflammation with cancer, as high affinity targets. A comparative structure-activity study revealed three modifications dissecting mPGES-1/5-LO inhibition, namely (i) truncation of the acidic, enolized dicarbonyl moiety and/or replacement by pyrazole, (ii) hydrogenation of the interaryl linker, and (iii) (dihydro)prenylation. The prenylated pyrazole analogue 11 selectively inhibited 5-LO, outperforming curcumin by a factor of up to 50, and impaired zymosan-induced mouse peritonitis along with reduced 5-LO product levels. Other pro-inflammatory targets of curcumin (i.e., mPGES-1, cyclooxygenases, 12/15-LOs, nuclear factor-κB, nuclear factor-erythroid 2-related factor-2, and signal transducer and activator of transcription 3) were hardly affected by 11. The strict structural requirements for mPGES-1 and 5-LO inhibition strongly suggest that specific interactions rather than redox or membrane effects underlie the inhibition of mPGES-1 and 5-LO by curcumin.

    Topics: Animals; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Curcumin; Humans; Lipoxygenase Inhibitors; Male; Mice; Monocytes; Peritonitis; Structure-Activity Relationship

2014
Characterization and pharmacological modulation of antigen-induced peritonitis in actively sensitized mice.
    British journal of pharmacology, 1993, Volume: 110, Issue:2

    1. The intraperitoneal (i.p.) injection of 1 or 10 micrograms ovalbumin to sensitized Balb/c mice led to an acute histamine release, firstly evidenced 1 min after the challenge and returning to basal levels 30 min thereafter. This phenomenon was unaccompanied by protein extravasation. A dose-dependent increase in the amounts of immunoreactive leukotriene (LT) C4 and LTB4 was observed in the peritoneal washing from sensitized mice 6 h after 1 or 10 micrograms ovalbumin administration. In separate experiments, the i.p. administration of 1 mg activated zymosan to non-immunized mice was followed by a marked protein extravasation, and by immunoreactive LTC4 and LTB4, but not histamine, release in mouse peritoneum 1 h after its injection. 2. Mediator release in the mice peritoneal cavity was concomitant with a transient neutrophil infiltration, which peaked at 6 h and returned to basal levels therefore. An intense eosinophil accumulation starting at 24 h, peaking at 48 h and returning to basal values at 164 h, was also observed. 3. Ovalbumin (1 microgram)-induced eosinophilia, observed at 24 h, was reduced by the pretreatment of the animals with dexamethasone (1 mg kg-1, s.c.) or with the 5-lipoxygenase inhibitor, BWA4C (20 mg kg-1, s.c.), whereas indomethacin (2 mg kg-1, s.c.) and the platelet-activating factor (PAF)-antagonist SR 27417 (10 mg kg-1, s.c.) were ineffective. These results indicate that metabolites of arachidonic acid of lipoxygenase pathway, but not cyclo-oxygenase derivatives or PAF, mediate antigen-induced eosinophil accumulation in the mouse peritoneum. 4. The histamine HI receptor antagonist drug, cetirizine (15-30 mg kg-1, s.c.) markedly reduced ovalbumin-induced eosinophil accumulation under conditions where terfenadine was ineffective, suggesting that the effect of cetirizine was not related to the inhibition of the H1 receptor effects of histamine.5. The immunosuppressive agent, FK-506 (1-2 mg kg-1, s.c.) and the protein synthesis inhibitor,cylcoheximide, when administered either in situ (0.06 ng/cavity) or systemically (5 mg kg-1, s.c.),prevented antigen-induced eosinophil accumulation in the mouse peritoneum, contributing to the concept that substances (probably cytokines) originating from lymphocytes may be involved in the modulation of the eosinophilotactic response in this model.6. The results of the present study indicate that the i.p. administration of ovalbumin to actively sensitized mice induced late eosinophil accumulation in t

    Topics: Animals; Benzeneacetamides; Cetirizine; Cycloheximide; Dexamethasone; Eosinophils; Histamine Release; Hydroxamic Acids; Indomethacin; Kinetics; Leukocyte Count; Leukotriene B4; Leukotriene C4; Lipoxygenase Inhibitors; Male; Mice; Mice, Inbred BALB C; Ovalbumin; Peritoneal Cavity; Peritonitis; Platelet Activating Factor; T-Lymphocytes; Tacrolimus; Terfenadine; Thiazoles; Zymosan

1993
A comparison of the anti-inflammatory activity of selective 5-lipoxygenase inhibitors with dexamethasone and colchicine in a model of zymosan induced inflammation in the rat knee joint and peritoneal cavity.
    Agents and actions, 1991, Volume: 32, Issue:3-4

    Intraperitoneal and intra-articular (knee joint) injection of zymosan in the rat caused two phases of increased vascular permeability, a rapid increase (0.25-0.5 h) and a secondary increase (2-3 h) which was temporally associated with the onset of leukocyte infiltration. Intraperitoneal injection of zymosan led to a single peak of eicosanoid production (LTB4, C4, D4, E4 and 6-oxo-PGF1 alpha) which was maximal at 0.125-0.25 h. Intra-articular injection led to an initial peak of LTB4 production (maximal at 0.25 h) and a secondary peak of LTB4 and PGE2 production (maximal at 3 h). Oral administration of the 5-lipoxygenase (5-LO) inhibitors phenidone, BW A4C (N-hydroxy-N-[3-(3-phenoxyphenyl)-2-propenyl] acetamide), A63162 (N-hydroxy-N-[1-(4-(phenylmethoxy) phenyl)ethyl] acetamide and ICI 207 968 (2-[3-pyridylmethyl]-indazolinone inhibited LTB4 production in A23187 stimulation blood ex vivo. The glucocorticosteroid dexamethasone had no effect in this model. The initial phase of increased vascular permeability in the peritoneal cavity and LTB4 production was dose dependently inhibited by the 5-LO inhibitors phenidone, BW A4C, A63162, and ICI 207 968 but not by dexamethasone or colchicine. The initial phase of increased permeability in the joint was unaffected by phenidone, BW A4C, dexamethasone or colchicine. However the latter two drugs inhibited the later phase of increased permeability and leukocyte infiltration in the joint and peritoneal cavity. These results demonstrate that zymosan induces eicosanoid production in vivo but the relative importance of these mediators varies depending on the inflammatory site.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arthritis; Benzeneacetamides; Calcimycin; Colchicine; Dexamethasone; Dinoprostone; Disease Models, Animal; Hydroxamic Acids; Inflammation; Kinetics; Knee Joint; Leukocytes; Leukotriene B4; Leukotrienes; Lipoxygenase Inhibitors; Male; Peritonitis; Pyrazoles; Rats; Zymosan

1991