bwa-4c has been researched along with Inflammation* in 4 studies
1 review(s) available for bwa-4c and Inflammation
Article | Year |
---|---|
5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors.
In conclusion, an effective modulator of the AA cascade for the treatment of asthma and other inflammatory diseases may require 5-LO inhibitory activity as well as LTD4 antagonism in order to limit the effects of LTB4, LTD4, and 5-HPETE. The unknown role of LTC4 with respect to bronchoconstriction and mucus production could mask the efficacy of a pure LTD4 antagonist in man, whereas the chemotactic property of LTB4 for eosinophils can contribute to lung inflammation. Indeed, it is observed that the blood of patients with bronchial asthma has increased numbers of hypodense eosinophils. In addition, the formation of lipid-derived peroxide radicals, such as 5-HPETE, are believed to be responsible for various types of cellular injuries associated with the inflammatory disease process. Because inhibition of the CO pathway is thought to explain the therapeutic effects of nonsteroidal antiinflammatory agents in rheumatic diseases, a 5-LO inhibitor with CO inhibitory activity may also be desirable profile for an antiasthma agent. The validation of the LT hypothesis of disease had to wait for the demonstration of a clinical effect by either a LTD4 receptor antagonist or a LT synthesis inhibitor (5-LO inhibitor). Only very recently has this evidence become available and it is now apparent that compounds that antagonize LTD4 receptors or inhibit LT synthesis have shown clinical efficacy in a wide range of diseases. Due to the breakthrough nature of this approach, certain of these compounds are being considered for expedited development. The absence of side effects seen in the clinical trials of selective 5-LO inhibitors is gratifying and argues that LTs are not important in homeostasis. Only time will tell whether 5-LO inhibitors will take their place in the therapeutic armamentarium; however, the recent demonstration of clinical efficacy by a number of these compounds is a significant step in this direction. Topics: Animals; Arachidonate 5-Lipoxygenase; Asthma; Eosinophils; Humans; Inflammation; Leukotriene Antagonists; Lipoxygenase Inhibitors; Lung Diseases; Neutrophils; Quinolines | 1992 |
3 other study(ies) available for bwa-4c and Inflammation
Article | Year |
---|---|
Novel and potent inhibitors of 5-lipoxygenase product synthesis based on the structure of pirinixic acid.
A novel class of potent 5-lipoxygenase (5-LO) product synthesis inhibitors based on the structure of pirinixic acid (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid, compound 1) is presented. Systematic profiling of 1, i.e., esterification of the carboxylic acid, alpha-substitution, and replacement of the o-dimethylaniline by 6-aminoquinoline, leads to potent suppressors of 5-LO product formation in activated polymorphonuclear leukocytes, exemplified by ethyl 2-[4-chloro-6-(quinoline-6-ylamino)-pyrimidin-2-ylsulfanyl]octane-1-carboxylate (6d, IC50 = 0.6 microM). These derivatives may possess potential for intervention with inflammatory and allergic diseases. Topics: Aminoquinolines; Cells, Cultured; Esterification; Humans; Hypersensitivity; Inflammation; Leukocytes; Lipoxygenase; Lipoxygenase Inhibitors; Pyrimidines; Structure-Activity Relationship | 2008 |
Pirinixic acid derivatives as novel dual inhibitors of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase.
Dual inhibition of the prostaglandin (PG) and leukotriene (LT) biosynthetic pathway is supposed to be superior over single interference, both in terms of efficacy and side effects. Here, we present a novel class of dual microsomal PGE(2) synthase-1/5-lipoxygenase (5-LO) inhibitors based on the structure of pirinixic acid [PA, 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)acetic acid, compound 1]. Target-oriented structural modification of 1, particularly alpha substitution with extended n-alkyl or bulky aryl substituents and concomitant replacement of the 2,3-dimethylaniline by a biphenyl-4-yl-methane-amino residue, resulted in potent suppression of mPGES-1 and 5-LO activity, exemplified by 2-(4-(biphenyl-4-ylmethylamino)-6-chloropyrimidin-2-ylthio)octanoic acid (7b, IC(50) = 1.3 and 1 microM, respectively). Select compounds also potently reduced PGE(2) and 5-LO product formation in intact cells. Importantly, inhibition of cyclooxygenases-1/2 was significantly less pronounced. Taken together, these pirinixic acid derivatives constitute a novel class of dual mPGES-1/5-LO inhibitors with a promising pharmacological profile and a potential for therapeutic use. Topics: Cell Line, Tumor; Cell Survival; Chemistry, Pharmaceutical; Cyclooxygenase 1; Cyclooxygenase 2; Drug Design; Enzyme Activation; Enzyme Inhibitors; Humans; Inflammation; Inhibitory Concentration 50; Intramolecular Oxidoreductases; Lipoxygenase Inhibitors; Models, Chemical; Prostaglandin-E Synthases; Pyrimidines | 2008 |
A comparison of the anti-inflammatory activity of selective 5-lipoxygenase inhibitors with dexamethasone and colchicine in a model of zymosan induced inflammation in the rat knee joint and peritoneal cavity.
Intraperitoneal and intra-articular (knee joint) injection of zymosan in the rat caused two phases of increased vascular permeability, a rapid increase (0.25-0.5 h) and a secondary increase (2-3 h) which was temporally associated with the onset of leukocyte infiltration. Intraperitoneal injection of zymosan led to a single peak of eicosanoid production (LTB4, C4, D4, E4 and 6-oxo-PGF1 alpha) which was maximal at 0.125-0.25 h. Intra-articular injection led to an initial peak of LTB4 production (maximal at 0.25 h) and a secondary peak of LTB4 and PGE2 production (maximal at 3 h). Oral administration of the 5-lipoxygenase (5-LO) inhibitors phenidone, BW A4C (N-hydroxy-N-[3-(3-phenoxyphenyl)-2-propenyl] acetamide), A63162 (N-hydroxy-N-[1-(4-(phenylmethoxy) phenyl)ethyl] acetamide and ICI 207 968 (2-[3-pyridylmethyl]-indazolinone inhibited LTB4 production in A23187 stimulation blood ex vivo. The glucocorticosteroid dexamethasone had no effect in this model. The initial phase of increased vascular permeability in the peritoneal cavity and LTB4 production was dose dependently inhibited by the 5-LO inhibitors phenidone, BW A4C, A63162, and ICI 207 968 but not by dexamethasone or colchicine. The initial phase of increased permeability in the joint was unaffected by phenidone, BW A4C, dexamethasone or colchicine. However the latter two drugs inhibited the later phase of increased permeability and leukocyte infiltration in the joint and peritoneal cavity. These results demonstrate that zymosan induces eicosanoid production in vivo but the relative importance of these mediators varies depending on the inflammatory site.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arthritis; Benzeneacetamides; Calcimycin; Colchicine; Dexamethasone; Dinoprostone; Disease Models, Animal; Hydroxamic Acids; Inflammation; Kinetics; Knee Joint; Leukocytes; Leukotriene B4; Leukotrienes; Lipoxygenase Inhibitors; Male; Peritonitis; Pyrazoles; Rats; Zymosan | 1991 |