Page last updated: 2024-10-16

butyric acid and Obesity

butyric acid has been researched along with Obesity in 36 studies

Butyric Acid: A four carbon acid, CH3CH2CH2COOH, with an unpleasant odor that occurs in butter and animal fat as the glycerol ester.
butyrate : A short-chain fatty acid anion that is the conjugate base of butyric acid, obtained by deprotonation of the carboxy group.
butyric acid : A straight-chain saturated fatty acid that is butane in which one of the terminal methyl groups has been oxidised to a carboxy group.

Obesity: A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).

Research Excerpts

ExcerptRelevanceReference
"This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis."8.31Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation. ( Bi, T; Chen, N; Zhan, L; Zhang, L; Zhou, W; Zhu, L, 2023)
"This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis."4.31Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation. ( Bi, T; Chen, N; Zhan, L; Zhang, L; Zhou, W; Zhu, L, 2023)
"Acetic acid, propionic acid, butyric acid, and total SCFA were significantly reduced in T2D patients compared to overweight/obese in the unadjusted model."4.12Circulating short-chain fatty acids in type 2 diabetic patients and overweight/obese individuals. ( Annuzzi, G; Bozzetto, L; Corrado, A; Costabile, G; Della Pepa, G; Giacco, R; Luongo, D; Rivellese, AA; Salamone, D; Testa, R; Vitale, M, 2022)
"Obesity is a multifaceted disease characterized by an abnormal accumulation of adipose tissue."3.30The effects of sodium butyrate supplementation on the expression levels of PGC-1α, PPARα, and UCP-1 genes, serum level of GLP-1, metabolic parameters, and anthropometric indices in obese individuals on weight loss diet: a study protocol for a triple-blind ( Amiri, P; Hosseini, SA; Roshanravan, N; Saghafi-Asl, M; Tootoonchian, M, 2023)
"However, the role of butyrate in overnutrition-induced microglial activation and hypothalamic inflammation remains unclear."1.72Sodium butyrate reduces overnutrition-induced microglial activation and hypothalamic inflammation. ( Chen, T; Duan, C; Ge, X; Guo, K; Li, Y; Liu, H; Lu, H; Shang, Y; Wang, X; Zhang, D, 2022)
"Obesity is a health concern."1.40Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. ( Durham, HA; Finley, J; Gao, Z; Goldsmith, F; Greenway, F; Keenan, MJ; Martin, RJ; McCutcheon, KL; Pelkman, C; Raggio, AM; Senevirathne, RN; Vidrine, K; Williams, C; Ye, J; Zhou, J, 2014)

Research

Studies (36)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (2.78)18.2507
2000's0 (0.00)29.6817
2010's19 (52.78)24.3611
2020's16 (44.44)2.80

Authors

AuthorsStudies
Tang, X1
Sun, Y1
Li, Y3
Ma, S1
Zhang, K1
Chen, A1
Lyu, Y1
Yu, R1
Wang, X1
Duan, C1
Lu, H1
Guo, K1
Ge, X1
Chen, T1
Shang, Y1
Liu, H1
Zhang, D1
Salamone, D2
Costabile, G1
Corrado, A1
Della Pepa, G2
Vitale, M2
Giacco, R2
Luongo, D2
Testa, R1
Rivellese, AA2
Annuzzi, G1
Bozzetto, L1
Yu, HR1
Sheen, JM1
Hou, CY2
Lin, IC1
Huang, LT1
Tain, YL2
Cheng, HH1
Lai, YJ1
Lin, YJ1
Tiao, MM1
Tsai, CC1
Fu, Q1
Li, T1
Zhang, C2
Ma, X1
Meng, L1
Liu, L2
Shao, K1
Wu, G1
Zhu, X1
Zhao, X1
Liu, K1
He, X1
Huang, J1
Yu, S2
Cui, M1
Gao, M1
Qian, Y1
Xie, Y1
Hui, M1
Hong, Y1
Nie, X1
Zhang, L4
Chen, N1
Zhan, L1
Bi, T1
Zhou, W2
Zhu, L1
Chen, C1
Chen, W3
Ding, H1
Wu, P1
Zhang, G1
Xie, K1
Zhang, T1
Geng, N1
Zhang, Y3
Wang, H3
Song, J1
Yu, L1
Wu, C1
Amiri, P1
Hosseini, SA1
Roshanravan, N1
Saghafi-Asl, M1
Tootoonchian, M1
Celano, G1
Calabrese, FM1
Riezzo, G1
D'Attoma, B1
Ignazzi, A1
Di Chito, M1
Sila, A1
De Nucci, S1
Rinaldi, R1
Linsalata, M1
Vacca, M1
Apa, CA1
Angelis, M1
Giannelli, G1
De Pergola, G1
Russo, F1
Rad, ZA1
Mousavi, SN1
Chiti, H1
Oh, TJ1
Sul, WJ1
Oh, HN1
Lee, YK1
Lim, HL1
Choi, SH1
Park, KS1
Jang, HC1
Kim, SY1
Chae, CW1
Lee, HJ1
Jung, YH1
Choi, GE1
Kim, JS1
Lim, JR1
Lee, JE1
Cho, JH1
Park, H2
Park, C1
Han, HJ1
Laiola, M1
Mangione, A1
Vitaglione, P1
Ercolini, D1
Beisner, J1
Filipe Rosa, L1
Kaden-Volynets, V1
Stolzer, I1
Günther, C1
Bischoff, SC1
Shih, MK1
Chen, YW2
Hsu, WH1
Yeh, YT1
Chang, SKC1
Liao, JX1
Zhou, D1
Pan, Q1
Shen, F1
Cao, HX1
Ding, WJ1
Fan, JG1
Canfora, EE1
van der Beek, CM2
Jocken, JWE1
Goossens, GH2
Holst, JJ2
Olde Damink, SWM1
Lenaerts, K2
Dejong, CHC1
Blaak, EE2
Pelgrim, CE1
Franx, BAA1
Snabel, J1
Kleemann, R1
Arnoldussen, IAC1
Kiliaan, AJ1
Wu, T2
Guo, X2
Zhang, M2
Yang, L2
Liu, R2
Yin, J1
Aguilar, EC1
da Silva, JF1
Navia-Pelaez, JM1
Leonel, AJ1
Lopes, LG1
Menezes-Garcia, Z1
Ferreira, AVM1
Capettini, LDSA1
Teixeira, LG1
Lemos, VS1
Alvarez-Leite, JI1
Sui, W1
den Hartigh, LJ1
Gao, Z2
Goodspeed, L1
Wang, S1
Das, AK1
Burant, CF1
Chait, A1
Blaser, MJ1
Winiczenko, R1
Górnicki, K1
Kaleta, A1
Janaszek-Mańkowska, M1
Khan, ZA1
Singh, C1
Khan, T1
Ganguly, M1
Bradsher, C1
Goodwin, P1
Petty, JT1
Sandau, C1
Bove, DG1
Marsaa, K1
Bekkelund, CS1
Lindholm, MG1
Salazar, J1
Bermúdez, V1
Olivar, LC1
Torres, W1
Palmar, J1
Añez, R1
Ordoñez, MG1
Rivas, JR1
Martínez, MS1
Hernández, JD1
Graterol, M1
Rojas, J1
Mubarak, Z1
Humaira, A1
Gani, BA1
Muchlisin, ZA1
Gremillet, C1
Jakobsson, JG1
Gomila, A1
Shaw, E1
Carratalà, J1
Leibovici, L1
Tebé, C1
Wiegand, I1
Vallejo-Torres, L1
Vigo, JM1
Morris, S1
Stoddart, M1
Grier, S1
Vank, C1
Cuperus, N1
Van den Heuvel, L1
Eliakim-Raz, N1
Vuong, C1
MacGowan, A1
Addy, I1
Pujol, M1
Cobb, A1
Rieger, E1
Bell, J1
Mallik, S1
Zhao, Z1
Szécsényi, Á1
Li, G1
Gascon, J1
Pidko, EA1
Zhang, GR1
Wolker, T1
Sandbeck, DJS1
Munoz, M1
Mayrhofer, KJJ1
Cherevko, S1
Etzold, BJM1
Lukashuk, L1
Yigit, N1
Rameshan, R1
Kolar, E1
Teschner, D1
Hävecker, M1
Knop-Gericke, A1
Schlögl, R1
Föttinger, K1
Rupprechter, G1
Franconieri, F1
Deshayes, S1
de Boysson, H1
Trad, S1
Martin Silva, N1
Terrier, B1
Bienvenu, B1
Galateau-Sallé, F1
Emile, JF1
Johnson, AC1
Aouba, A1
Vogt, TJ1
Gevensleben, H1
Dietrich, J1
Kristiansen, G1
Bootz, F1
Landsberg, J1
Goltz, D1
Dietrich, D1
Idorn, M1
Skadborg, SK1
Kellermann, L1
Halldórsdóttir, HR1
Holmen Olofsson, G1
Met, Ö1
Thor Straten, P1
Johnson, LE1
Brockstedt, D1
Leong, M1
Lauer, P1
Theisen, E1
Sauer, JD1
McNeel, DG1
Morandi, F1
Marimpietri, D1
Horenstein, AL1
Bolzoni, M1
Toscani, D1
Costa, F1
Castella, B1
Faini, AC1
Massaia, M1
Pistoia, V1
Giuliani, N1
Malavasi, F1
Qiu, J1
Peng, S1
Yang, A1
Ma, Y1
Han, L1
Cheng, MA1
Farmer, E1
Hung, CF1
Wu, TC1
Modak, S1
Le Luduec, JB1
Cheung, IY1
Goldman, DA1
Ostrovnaya, I1
Doubrovina, E1
Basu, E1
Kushner, BH1
Kramer, K1
Roberts, SS1
O'Reilly, RJ1
Cheung, NV1
Hsu, KC1
Salgarello, T1
Giudiceandrea, A1
Calandriello, L1
Marangoni, D1
Colotto, A1
Caporossi, A1
Falsini, B1
Lefrançois, P1
Xie, P1
Wang, L2
Tetzlaff, MT1
Moreau, L1
Watters, AK1
Netchiporouk, E1
Provost, N1
Gilbert, M1
Ni, X1
Sasseville, D1
Wheeler, DA1
Duvic, M1
Litvinov, IV1
O'Connor, BJ1
Fryda, NJ1
Ranglack, DH1
Yang, Y2
Yang, J1
Zhang, X2
Grün, AL1
Emmerling, C1
Aumeeruddy-Elalfi, Z1
Ismaël, IS1
Hosenally, M1
Zengin, G1
Mahomoodally, MF1
Dotsenko, A1
Gusakov, A1
Rozhkova, A1
Sinitsyna, O1
Shashkov, I1
Sinitsyn, A1
Hong, CE1
Kim, JU1
Lee, JW1
Lee, SW1
Jo, IH1
Pandiyarajan, S1
Premasudha, P1
Kadirvelu, K1
Wang, B1
Luo, L1
Wang, D1
Ding, R1
Hong, J1
Caviezel, D1
Maissen, S1
Niess, JH1
Kiss, C1
Hruz, P1
Pockes, S1
Wifling, D1
Keller, M1
Buschauer, A1
Elz, S1
Santos, AF1
Ferreira, IP1
Pinheiro, CB1
Santos, VG1
Lopes, MTP1
Teixeira, LR1
Rocha, WR1
Rodrigues, GLS1
Beraldo, H1
Lohar, S1
Dhara, K1
Roy, P1
Sinha Babu, SP1
Chattopadhyay, P1
Sukwong, P1
Sunwoo, IY1
Lee, MJ1
Ra, CH1
Jeong, GT1
Kim, SK2
Huvinen, E1
Eriksson, JG1
Stach-Lempinen, B1
Tiitinen, A1
Koivusalo, SB1
Malhotra, M1
Suresh, S1
Garg, A1
Wei, L1
Jiang, Y2
Liu, S1
Liu, Y1
Rausch-Fan, X1
Liu, Z1
Marques, WL1
van der Woude, LN1
Luttik, MAH1
van den Broek, M1
Nijenhuis, JM1
Pronk, JT1
van Maris, AJA1
Mans, R1
Gombert, AK1
Xu, A1
Sun, J1
Li, J1
Zheng, R1
Han, Z1
Ji, L1
Shen, WQ1
Bao, LP1
Hu, SF1
Gao, XJ1
Xie, YP1
Gao, XF1
Huang, WH1
Lu, X1
Gostin, PF1
Addison, O1
Morrell, AP1
Cook, AJMC1
Liens, A1
Stoica, M1
Ignatyev, K1
Street, SR1
Wu, J1
Chiu, YL1
Davenport, AJ1
Qiu, Z1
Shu, J1
Tang, D1
Gao, X1
Zhang, J3
Huang, K1
Wai, H1
Du, K1
Anesini, J1
Kim, WS1
Eastman, A1
Micalizio, GC1
Liang, JH1
Huo, XK1
Cheng, ZB1
Sun, CP1
Zhao, JC1
Kang, XH1
Zhang, TY1
Chen, ZJ1
Yang, TM1
Wu, YY1
Deng, XP1
Zhang, YX1
Salem, HF1
Kharshoum, RM1
Abou-Taleb, HA1
AbouTaleb, HA1
AbouElhassan, KM1
Ohata, C1
Ohyama, B1
Kuwahara, F1
Katayama, E1
Nakama, T1
Kobayashi, S1
Kashiwagi, T1
Kimura, J1
Lin, JD1
Liou, MJ1
Hsu, HL1
Leong, KK1
Chen, YT1
Wang, YR1
Hung, WS1
Lee, HY1
Tsai, HJ1
Tseng, CP1
Alten, B1
Yesiltepe, M1
Bayraktar, E1
Tas, ST1
Gocmen, AY1
Kursungoz, C1
Martinez, A1
Sara, Y1
Huang, S2
Adams, E1
Van Schepdael, A1
Wang, Q1
Chung, CY1
Yang, W1
Yang, G1
Chough, S1
Chen, Y1
Yin, B1
Bhattacharya, R1
Hu, Y1
Saeui, CT1
Yarema, KJ1
Betenbaugh, MJ1
Zhang, H1
Patik, JC1
Tucker, WJ1
Curtis, BM1
Nelson, MD1
Nasirian, A1
Park, S1
Brothers, RM1
Dohlmann, TL1
Hindsø, M1
Dela, F1
Helge, JW1
Larsen, S1
Gayani, B1
Dilhari, A1
Wijesinghe, GK1
Kumarage, S1
Abayaweera, G1
Samarakoon, SR1
Perera, IC1
Kottegoda, N1
Weerasekera, MM1
Nardi, MV1
Timpel, M1
Ligorio, G1
Zorn Morales, N1
Chiappini, A1
Toccoli, T1
Verucchi, R1
Ceccato, R1
Pasquali, L1
List-Kratochvil, EJW1
Quaranta, A1
Dirè, S1
Heo, K1
Jo, SH1
Shim, J1
Kang, DH1
Kim, JH1
Park, JH1
Akhtar, N1
Saha, A1
Kumar, V1
Pradhan, N1
Panda, S1
Morla, S1
Kumar, S1
Manna, D1
Xu, E1
Li, D1
Quan, J1
Xu, L1
Saslow, SA1
Um, W1
Pearce, CI1
Bowden, ME1
Engelhard, MH1
Lukens, WL1
Kim, DS1
Schweiger, MJ1
Kruger, AA1
Adair, LS1
Kuzawa, C1
McDade, T1
Carba, DB1
Borja, JB1
Liang, X2
Song, W1
Wang, K1
Zhang, B1
Peele, ME1
Luo, HR1
Chen, ZY1
Fei, JJ1
Du, ZJ1
Yi, KJ1
Im, WT1
Kim, DW1
Ji, X1
Xu, Z1
Ding, Y1
Song, Q1
Li, B2
Zhao, H1
Lee, DW1
Lee, H1
Kwon, BO1
Khim, JS1
Yim, UH1
Park, B1
Choi, IG1
Kim, BS1
Kim, JJ1
Wang, JJ1
Chen, Q1
Li, YZ1
Sakai, M1
Yamaguchi, M1
Nagao, Y1
Kawachi, N1
Kikuchi, M1
Torikai, K1
Kamiya, T1
Takeda, S1
Watanabe, S1
Takahashi, T1
Arakawa, K1
Nakano, T1
Rufo, S1
Continentino, MA1
Nikolaou, V1
Plass, F1
Planchat, A1
Charisiadis, A1
Charalambidis, G1
Angaridis, PA1
Kahnt, A1
Odobel, F1
Coutsolelos, AG1
Fuentes, I1
García-Mendiola, T1
Sato, S2
Pita, M1
Nakamura, H1
Lorenzo, E1
Teixidor, F1
Marques, F1
Viñas, C1
Liu, F1
Qi, P1
Cleophas, MCP1
Ratter, JM1
Bekkering, S1
Quintin, J1
Schraa, K1
Stroes, ES1
Netea, MG1
Joosten, LAB1
Fang, W1
Xue, H1
Chen, X1
Chen, K1
Ling, W1
Vidrine, K1
Ye, J2
Martin, RJ1
McCutcheon, KL1
Raggio, AM1
Pelkman, C1
Durham, HA1
Zhou, J1
Senevirathne, RN1
Williams, C1
Greenway, F1
Finley, J1
Goldsmith, F1
Keenan, MJ1
Henagan, TM1
Stefanska, B1
Fang, Z1
Navard, AM1
Lenard, NR1
Devarshi, PP1
Li, L1
Jiang, H1
Kim, HJ1
Yum, MY1
Campbell, MR1
Jane, JL1
White, PJ1
Hendrich, S1
Reijnders, D1
Hermes, GD1
Neis, EP1
Most, J1
Kootte, RS1
Nieuwdorp, M1
Groen, AK1
Olde Damink, SW1
Boekschoten, MV1
Smidt, H1
Zoetendal, EG1
Dejong, CH1
Du, J1
Yano, N1
Zhao, YT1
Dubielecka, PM1
Zhuang, S1
Chin, YE1
Qin, G1
Zhao, TC1
Fardet, A1
Sossai, P1
Okazaki, Y1
Sitanggang, NV1
Ohnishi, N1
Inoue, J1
Iguchi, T1
Watanabe, T1
Tomotake, H1
Harada, K1
Kato, N1
McDevitt, J1
Wilson, S1
Her, GR1
Stobiecki, M1
Goldman, P1

Clinical Trials (3)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
The Role of Microbiome Reprogramming on Liver Fat Accumulation[NCT03914495]57 participants (Actual)Interventional2019-05-21Terminated (stopped due to PI carefully considered multiple factors and decided to close study to any further enrollment.)
Using a Complex Carbohydrate Mixture Added to a High-protein Diet to Steer Fermentation and Improve Metabolic, Gut and Brain Health[NCT05354245]44 participants (Anticipated)Interventional2022-09-08Recruiting
Acceptability, Tolerance, Satiety and Prebiotic Effect of a New Infant Cereal in Infant Between 5 and 8 Months of Age, at the Beginning of Complementary Feeding[NCT02781298]46 participants (Actual)Interventional2014-12-31Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

2 reviews available for butyric acid and Obesity

ArticleYear
New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?
    Nutrition research reviews, 2010, Volume: 23, Issue:1

    Topics: Anticarcinogenic Agents; Antioxidants; Blood Glucose; Butyric Acid; Cardiovascular Diseases; Diabete

2010
Butyric acid: what is the future for this old substance?
    Swiss medical weekly, 2012, Volume: 142

    Topics: beta-Thalassemia; Butyric Acid; Humans; Inflammatory Bowel Diseases; Intestinal Mucosa; Intestines;

2012

Trials

5 trials available for butyric acid and Obesity

ArticleYear
The effects of sodium butyrate supplementation on the expression levels of PGC-1α, PPARα, and UCP-1 genes, serum level of GLP-1, metabolic parameters, and anthropometric indices in obese individuals on weight loss diet: a study protocol for a triple-blind
    Trials, 2023, Aug-01, Volume: 24, Issue:1

    Topics: Adolescent; Adult; Butyric Acid; Diet, Reducing; Dietary Supplements; Glucagon-Like Peptide 1; Human

2023
Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role?
    Clinical nutrition (Edinburgh, Scotland), 2021, Volume: 40, Issue:2

    Topics: Adult; Area Under Curve; Blood Glucose; Butyric Acid; Diet, Mediterranean; Diet, Western; Fasting; F

2021
Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial.
    Scientific reports, 2017, 05-24, Volume: 7, Issue:1

    Topics: Acetic Acid; Adult; Butyric Acid; Colon; Cross-Over Studies; Double-Blind Method; Energy Metabolism;

2017
    Neural computing & applications, 2018, Volume: 30, Issue:6

    Topics: Activities of Daily Living; Acute Disease; Adalimumab; Adaptation, Physiological; Adenosine Triphosp

2018
Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial.
    Cell metabolism, 2016, 07-12, Volume: 24, Issue:1

    Topics: Adipocytes; Adult; Aged; Amoxicillin; Anti-Bacterial Agents; Biomarkers; Butyric Acid; Cell Shape; D

2016

Other Studies

29 other studies available for butyric acid and Obesity

ArticleYear
Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function.
    Journal of food biochemistry, 2022, Volume: 46, Issue:10

    Topics: Animals; Antioxidants; Body Weight; Butyric Acid; Diet, High-Fat; Dietary Fiber; Glucose; Glutathion

2022
Sodium butyrate reduces overnutrition-induced microglial activation and hypothalamic inflammation.
    International immunopharmacology, 2022, Volume: 111

    Topics: Animals; Butyric Acid; Diet, High-Fat; Hypothalamus; Inflammation; Mice; Mice, Inbred C57BL; Microgl

2022
Circulating short-chain fatty acids in type 2 diabetic patients and overweight/obese individuals.
    Acta diabetologica, 2022, Volume: 59, Issue:12

    Topics: Acetic Acid; Butyric Acid; Diabetes Mellitus, Type 2; Fatty Acids, Volatile; Humans; Obesity; Overwe

2022
Effects of Maternal Gut Microbiota-Targeted Therapy on the Programming of Nonalcoholic Fatty Liver Disease in Dams and Fetuses, Related to a Prenatal High-Fat Diet.
    Nutrients, 2022, Sep-27, Volume: 14, Issue:19

    Topics: Animals; Butyric Acid; Diet, High-Fat; Fatty Acids, Volatile; Female; Fetus; Gastrointestinal Microb

2022
Butyrate mitigates metabolic dysfunctions via the ERα-AMPK pathway in muscle in OVX mice with diet-induced obesity.
    Cell communication and signaling : CCS, 2023, 05-04, Volume: 21, Issue:1

    Topics: AMP-Activated Protein Kinases; Animals; Butyric Acid; Diet, High-Fat; Estrogen Receptor alpha; Femal

2023
Short-chain fatty acid-butyric acid ameliorates granulosa cells inflammation through regulating METTL3-mediated N6-methyladenosine modification of FOSL2 in polycystic ovarian syndrome.
    Clinical epigenetics, 2023, 05-13, Volume: 15, Issue:1

    Topics: Animals; Butyric Acid; DNA Methylation; Fatty Acids, Volatile; Female; Fos-Related Antigen-2; Granul

2023
Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation.
    Journal of ethnopharmacology, 2023, Dec-05, Volume: 317

    Topics: Animals; Butyric Acid; Diet, High-Fat; Fatty Acids, Volatile; Gastrointestinal Microbiome; Mice; Mic

2023
High-fat diet-induced gut microbiota alteration promotes lipogenesis by butyric acid/miR-204/ACSS2 axis in chickens.
    Poultry science, 2023, Volume: 102, Issue:9

    Topics: Animals; Butyric Acid; Chickens; Diet, High-Fat; Dysbiosis; Gastrointestinal Microbiome; Lipogenesis

2023
Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice.
    Molecules (Basel, Switzerland), 2023, Jun-23, Volume: 28, Issue:13

    Topics: Animals; Butyric Acid; Diet, High-Fat; Dietary Fiber; Gastrointestinal Microbiome; Mice; Mice, Inbre

2023
Effects of a Very-Low-Calorie Ketogenic Diet on the Fecal and Urinary Volatilome in an Obese Patient Cohort: A Preliminary Investigation.
    Nutrients, 2023, Aug-28, Volume: 15, Issue:17

    Topics: Butyric Acid; Diet, Ketogenic; Esters; Humans; Obesity; Pilot Projects; Volatile Organic Compounds

2023
A low-carb diet increases fecal short-chain fatty acids in feces of obese women following a weight-loss program: randomized feeding trial.
    Scientific reports, 2023, 10-24, Volume: 13, Issue:1

    Topics: Acetic Acid; Butyric Acid; Diet; Fatty Acids, Volatile; Feces; Female; Humans; Insulins; Interleukin

2023
Butyrate attenuated fat gain through gut microbiota modulation in db/db mice following dapagliflozin treatment.
    Scientific reports, 2019, 12-30, Volume: 9, Issue:1

    Topics: Adipose Tissue; Animals; Benzhydryl Compounds; Butyric Acid; Disease Models, Animal; Gastrointestina

2019
Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1.
    Cell death & disease, 2020, 06-18, Volume: 11, Issue:6

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Butyric Acid; Humans; Mice; NADPH Oxidase 2; NF-E

2020
Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides.
    Frontiers in immunology, 2021, Volume: 12

    Topics: Animal Feed; Animals; Biomarkers; Butyric Acid; Dietary Supplements; Disease Models, Animal; Female;

2021
Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats.
    Molecules (Basel, Switzerland), 2021, Jun-30, Volume: 26, Issue:13

    Topics: Animals; Benzhydryl Compounds; Butyric Acid; Fatty Acids, Volatile; Female; Gastrointestinal Microbi

2021
Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.
    Scientific reports, 2017, 05-08, Volume: 7, Issue:1

    Topics: Adipose Tissue; Animals; Body Weight; Butyric Acid; Cecum; Diet, High-Fat; Endotoxemia; Epididymis;

2017
Butyrate Reduces HFD-Induced Adipocyte Hypertrophy and Metabolic Risk Factors in Obese LDLr-/-.Leiden Mice.
    Nutrients, 2017, Jul-07, Volume: 9, Issue:7

    Topics: Adipocytes; Adipokines; Adipose Tissue; Animals; Butyric Acid; Cell Size; Diabetes Mellitus, Type 2;

2017
Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice.
    Food & function, 2017, Sep-20, Volume: 8, Issue:9

    Topics: Animals; Anthocyanins; Butyric Acid; Diet, High-Fat; Feces; Glycine max; Humans; Interleukin-6; Live

2017
Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-γ in obese Apo E knockout mice.
    Nutrition (Burbank, Los Angeles County, Calif.), 2018, Volume: 47

    Topics: Adipocytes; Adipogenesis; Animals; Anti-Obesity Agents; Butyric Acid; Dietary Supplements; Mice; Mic

2018
Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism.
    Food & function, 2018, Apr-25, Volume: 9, Issue:4

    Topics: Animals; Anthocyanins; Anti-Obesity Agents; Antioxidants; Biomarkers; Butyric Acid; Diet, High-Fat;

2018
Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota.
    The Journal of nutrition, 2018, 04-01, Volume: 148, Issue:4

    Topics: Acetic Acid; Animals; Bacteria; Butyric Acid; Caloric Restriction; Colon; Diet, High-Fat; Diet, Redu

2018
Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males.
    Scientific reports, 2019, 01-28, Volume: 9, Issue:1

    Topics: Adult; Anti-Infective Agents; BCG Vaccine; beta-Glucans; Butyric Acid; Case-Control Studies; Cytokin

2019
Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice.
    The Journal of nutrition, 2019, 05-01, Volume: 149, Issue:5

    Topics: Animals; Butyric Acid; Colon; Diet, High-Fat; Dietary Fats; Dietary Supplements; Dysbiosis; Gastroin

2019
Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism.
    Obesity (Silver Spring, Md.), 2014, Volume: 22, Issue:2

    Topics: Abdominal Fat; Adiposity; Amylose; Animals; Anti-Obesity Agents; Bifidobacterium; Butyric Acid; Cecu

2014
Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning.
    British journal of pharmacology, 2015, Volume: 172, Issue:11

    Topics: Adaptation, Physiological; Adiposity; Animals; Blood Glucose; Body Weight; Butyric Acid; Carnitine;

2015
Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.
    Journal of food science, 2015, Volume: 80, Issue:9

    Topics: Adult; Amylose; Bacteria; Body Mass Index; Butyric Acid; Diet; Dietary Carbohydrates; Digestion; Fat

2015
Sodium Butyrate Protects -Against High Fat Diet-Induced Cardiac Dysfunction and Metabolic Disorders in Type II Diabetic Mice.
    Journal of cellular biochemistry, 2017, Volume: 118, Issue:8

    Topics: Animals; Butyric Acid; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; E

2017
Burdock fermented by Aspergillus awamori elevates cecal Bifidobacterium, and reduces fecal deoxycholic acid and adipose tissue weight in rats fed a high-fat diet.
    Bioscience, biotechnology, and biochemistry, 2013, Volume: 77, Issue:1

    Topics: Acetic Acid; Adipose Tissue; Animals; Arctium; Aspergillus; Bifidobacterium; Butyric Acid; Cecum; De

2013
Urinary organic acid profiles in fatty Zucker rats: indications for impaired oxidation of butyrate and hexanoate.
    Metabolism: clinical and experimental, 1990, Volume: 39, Issue:10

    Topics: Acids; Acyl-CoA Dehydrogenase; Animals; Butyrates; Butyric Acid; Caproates; Fatty Acid Desaturases;

1990