butylidenephthalide and Machado-Joseph-Disease

butylidenephthalide has been researched along with Machado-Joseph-Disease* in 4 studies

Other Studies

4 other study(ies) available for butylidenephthalide and Machado-Joseph-Disease

ArticleYear
Preconditioning of exosomes derived from human olfactory ensheathing cells improved motor coordination and balance in an SCA3/MJD mouse model: A new therapeutic approach.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2023, Dec-01, Volume: 191

    Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.

    Topics: Animals; Exosomes; HEK293 Cells; Humans; Machado-Joseph Disease; Mice; MicroRNAs

2023
Anti-Excitotoxic Effects of N-Butylidenephthalide Revealed by Chemically Insulted Purkinje Progenitor Cells Derived from SCA3 iPSCs.
    International journal of molecular sciences, 2022, Jan-26, Volume: 23, Issue:3

    Spinocerebellar ataxia type 3 (SCA3) is characterized by the over-repetitive CAG codon in the ataxin-3 gene (

    Topics: Animals; Ataxin-3; Autophagy; Calpain; Cell Differentiation; Cells, Cultured; Humans; Induced Pluripotent Stem Cells; Machado-Joseph Disease; Male; Phthalic Anhydrides; Proteasome Endopeptidase Complex; Purkinje Cells; Repressor Proteins

2022
    International journal of molecular sciences, 2021, Jun-13, Volume: 22, Issue:12

    Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (

    Topics: Adenylate Kinase; Animals; Ataxin-3; Autophagy; Cerebellum; Female; HEK293 Cells; Humans; Machado-Joseph Disease; MAP Kinase Signaling System; Mice, Inbred C57BL; Motor Activity; Mutation; Phthalic Anhydrides; Protein Aggregates; Proto-Oncogene Proteins c-akt; Purkinje Cells; Signal Transduction; TOR Serine-Threonine Kinases

2021
n-Butylidenephthalide exhibits protection against neurotoxicity through regulation of tryptophan 2, 3 dioxygenase in spinocerebellar ataxia type 3.
    Neuropharmacology, 2017, 05-01, Volume: 117

    Spinocerebellar ataxia type 3 or Machado-Joseph disease (SCA3/MJD) is characterized by the repetition of a CAG codon in the ataxin-3 gene (ATXN3), which leads to the formation of an elongated mutant ATXN3 protein that can neither be denatured nor undergo proteolysis in the normal manner. This abnormal proteolysis leads to the accumulation of cleaved fragments, which have been identified as toxic and further they act as a seed for more aggregate formation, thereby increasing toxicity in neuronal cells. To date, there have been few studies or treatment strategies that have focused on controlling toxic fragment formation. The aim of this study is to develop a potential treatment strategy for addressing the complications of toxic fragment formation and to provide an alternative treatment strategy for SCA3. Our preliminary data on anti-aggregation and toxic fragment formation using an HEK (human embryonic kidney cells) 293T-84Q-eGFP (green fluorescent protein) cell model identified n-butylidenephthalide (n-BP) as a potential drug treatment for SCA3. n-BP decreased toxic fragment formation in both SCA3 cell and animal models. Moreover, results showed that n-BP can improve gait, motor coordination, and activity in SCA3 mice. To comprehend the molecular basis behind the control of toxic fragment formation, we used microarray analysis to identify tryptophan metabolism as a major player in controlling the fate of mutant ATXN3 aggregates. We also demonstrated that n-BP functions by regulating the early part of the kynurenine pathway through the downregulation of tryptophan 2, 3-dioxygenase (TDO2), which decreases the downstream neurotoxic product, quinolinic acid (QA). In addition, through the control of TDO2, n-BP also decreases active calpain levels, an important enzyme involved in the proteolysis of mutant ATXN3, thereby decreasing toxic fragment formation and associated neurotoxicity. Collectively, these findings indicate a correlation between n-BP, TDO2, QA, calpain, and toxic fragment formation. Thus, this study contributes to a better understanding of the molecular interactions involved in SCA3, and provides a novel potential treatment strategy for this neurodegenerative disease.

    Topics: Animals; Ataxin-3; Calcium; Calpain; Cerebellum; Disease Models, Animal; HEK293 Cells; Humans; Machado-Joseph Disease; Mice, Inbred C57BL; Mice, Transgenic; Motor Activity; Neuroprotective Agents; Phthalic Anhydrides; Quinolinic Acid; Ryanodine Receptor Calcium Release Channel; Tryptophan; Tryptophan Oxygenase

2017