butaprost has been researched along with Ocular-Hypotension* in 2 studies
2 other study(ies) available for butaprost and Ocular-Hypotension
Article | Year |
---|---|
Prostanoid EP4 receptor stimulation produces ocular hypotension by a mechanism that does not appear to involve uveoscleral outflow.
As part of a systematic elucidation of the pharmacology of prostaglandin's (PG) effects on intraocular pressure in the monkey, the prototypical selective prostanoid EP(4) receptor agonist (3,7-dithia PGE(1)) was examined. It was found to be highly efficacious in nonhuman primates, and its mechanism of ocular hypotensive activity was investigated.. Intraocular pressure (IOP) was measured by pneumatonometry in conscious monkeys restrained in custom-designed chairs. All other animal experiments were performed in animals sedated with ketamine or anesthetized with ketamine/diazepam and given drug or vehicle for various lengths of time. Aqueous flow was determined by fluorophotometry. Total outflow facility was measured by the two-level, constant-pressure method and by 2-minute tonography in both normotensive and hypertensive monkey eyes. Uveoscleral outflow was measured by perfusing the anterior chamber with FITC-labeled dextran for 30 minutes at a fixed IOP of approximately 15 mm Hg. Isometric responses to drugs were measured in longitudinal and radial preparations of monkey and human isolated ciliary smooth muscle specimens.. The selective EP(4) receptor agonist 3,7-dithia PGE(1) and an isopropyl ester prodrug thereof reduced IOP in monkeys. A single dose of 3,7-dithia PGE(1) isopropyl ester, at a 0.01% or 0.1% dose, decreased IOP in the glaucomatous monkey in the range of 40% to 50%. Studies on total outflow facility by the two-level, constant-pressure perfusion method and tonography indicated that EP(4) receptor stimulation facilitated aqueous humor outflow facility. No effect on aqueous flow was apparent. In contrast to all PGs and prostamides studied to date, 3,7-dithia PGE(1) exerted no effect on uveoscleral outflow measured directly. Moreover, it did not relax longitudinal or radial preparations of isolated human or monkey ciliary muscles.. The EP(4) receptor agonist 3,7-dithia PGE(1) is a highly efficacious IOP-lowering drug in monkeys. It has no effect on uveoscleral outflow but does increase total outflow facility, which accounts for a substantial proportion of the ocular hypotensive activity. Topics: Alprostadil; Animals; Anterior Chamber; Antihypertensive Agents; Aqueous Humor; Atropine; Ciliary Body; Dextrans; Dinoprostone; Disease Models, Animal; Female; Fluorescein-5-isothiocyanate; Fluorophotometry; Humans; Intraocular Pressure; Isometric Contraction; Macaca fascicularis; Muscle, Smooth; Ocular Hypotension; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP4 Subtype; Sclera; Tonometry, Ocular; Transfection; Uvea | 2009 |
Molecular characterization and ocular hypotensive properties of the prostanoid EP2 receptor.
The cloning of the genes that encode for prostaglandin (PG) receptors has resolved much of the complexity and controversy in this area by confirming the classification proposed by Coleman, et al. Two issues that remained unresolved were (1) the inability of the EP2 agonist butaprost to interact with the cloned putative EP2 receptor and (2) molecular biological confirmation of a fourth PGE2-sensitive receptor, which was pharmacologically designated EP4. In order to provide clarification, we attempted to clone further PGE2-sensitive receptors. By using a cDNA probe that encodes for the human EP3A receptor, a cDNA clone that encoded for a novel PGE2-sensitive receptor was obtained by screening a human placenta library. This cDNA clone was transfected into COS-7 cells for pharmacological studies. The cDNA clone obtained from human placenta had only about 30% amino acid identity with cDNAs for other PG receptors, including those that encode for the previously proposed murine and human EP2 receptors. Radioligand binding studies on the novel EP receptor expressed in COS-7 cells revealed that selective EP2 agonists such as butaprost, AH 13205, AY 23626 and 19(R)-OH PGE2 all competed with 3H-PGE2 for its binding sites, whereas selective agonists for other PG receptor subtypes had minimal or no effect. This receptor was coupled to adenylate cyclase and EP2 agonists caused dose-related increases in cAMP. It appears that the cDNA described herein encodes for the pharmacologically defined EP2 receptor. Ocular studies revealed that AH 13205 decreased intraocular pressure in normal and ocular hypertensive monkeys by a mechanism that does not appear to involve inhibition of aqueous humor secretion. Topics: Alprostadil; Animals; Aqueous Humor; Binding, Competitive; Cell Line; Cloning, Molecular; Cyclic AMP; DNA Probes; Female; Fluorophotometry; Humans; Intraocular Pressure; Macaca fascicularis; Ocular Hypotension; Prostaglandins E, Synthetic; Prostanoic Acids; Radioligand Assay; Receptors, Prostaglandin E; Transfection | 1995 |