butaprost has been researched along with Fibrosis* in 2 studies
2 other study(ies) available for butaprost and Fibrosis
Article | Year |
---|---|
Activation of the prostaglandin E
Renal fibrosis plays a pivotal role in the development and progression of chronic kidney disease, which affects 10% of the adult population. Previously, it has been demonstrated that the cyclooxygenase-2 (COX-2)/prostaglandin (PG) system influences the progression of renal injury. Here, we evaluated the impact of butaprost, a selective EP. We studied the anti-fibrotic efficacy of butaprost using Madin-Darby Canine Kidney (MDCK) cells, mice that underwent unilateral ureteral obstruction and human precision-cut kidney slices. Fibrogenesis was evaluated on a gene and protein level by qPCR and Western blotting.. Butaprost (50 μM) reduced TGF-β-induced fibronectin (FN) expression, Smad2 phosphorylation and epithelial-mesenchymal transition in MDCK cells. In addition, treatment with 4 mg/kg/day butaprost attenuated the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery, as illustrated by a reduction in the gene and protein expression of α-smooth muscle actin, FN and collagen 1A1. More importantly, a similar anti-fibrotic effect of butaprost was observed in human precision-cut kidney slices exposed to TGF-β. The mechanism of action of butaprost appeared to be a direct effect on TGF-β/Smad signalling, which was independent of the cAMP/PKA pathway.. In conclusion, this study demonstrates that stimulation of the EP Topics: Aged; Alprostadil; Animals; Cell Line; Dogs; Epithelial-Mesenchymal Transition; Female; Fibrosis; Humans; Kidney; Kidney Diseases; Male; MART-1 Antigen; Mice; Mice, Inbred C57BL; Receptors, Prostaglandin E, EP2 Subtype; Tissue Culture Techniques; Ureteral Obstruction; Urological Agents | 2019 |
Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase.
Prostaglandin E(2) blocks transforming growth factor TGF beta1-induced CCN2/CTGF expression in lung and kidney fibroblasts. PGE(2) levels are high in gingival tissues yet CCN2/CTGF expression is elevated in fibrotic gingival overgrowth. Gingival fibroblast expression of CCN2/CTGF in the presence of PGE(2) led us to compare the regulation of CCN2/CTGF expression in fibroblasts cultured from different tissues. Data demonstrate that the TGFbeta1-induced expression of CCN2/CTGF in human lung and renal mesangial cells is inhibited by 10 nm PGE(2), whereas human gingival fibroblasts are resistant. Ten nm PGE(2) increases cAMP accumulation in lung but not gingival fibroblasts, which require 1 mum PGE(2) to elevate cAMP. Micromolar PGE(2) only slightly reduces the TGFbeta1-stimulated CCN2/CTGF levels in gingival cells. EP2 prostaglandin receptor activation with butaprost blocks the TGFbeta1-stimulated expression of CCN2/CTGF expression in lung, but not gingival, fibroblasts. In lung fibroblasts, inhibition of the TGFbeta1-stimulated CCN2/CTGF by PGE(2), butaprost, or forskolin is due to p38, ERK, and JNK MAP kinase inhibition that is cAMP-dependent. Inhibition of any two MAPKs completely blocks CCN2/CTGF expression stimulated by TGFbeta1. These data mimic the inhibitory effects of 10 nm PGE(2) and forskolin that were dependent on PKA activity. In gingival fibroblasts, the sole MAPK mediating the TGFbeta1-stimulated CCN2/CTGF expression is JNK. Whereas forskolin reduces TGFbeta1-stimulated expression of CCN2/CTGF by 35% and JNK activation in gingival fibroblasts, micromolar PGE(2)-stimulated JNK in gingival fibroblasts and opposes the inhibitory effects of cAMP on CCN2/CTGF expression. Stimulation of the EP3 receptor with sulprostone results in a robust increase in JNK activation in these cells. Taken together, data identify two mechanisms by which TGFbeta1-stimulated CCN2/CTGF levels in human gingival fibroblasts resist down-regulation by PGE(2): (i) cAMP cross-talk with MAPK pathways is limited in gingival fibroblasts; (ii) PGE(2) activation of the EP3 prostanoid receptor stimulates the activation of JNK. Topics: Adult; Alprostadil; Cells, Cultured; Colforsin; Connective Tissue Growth Factor; Cyclic AMP; Dinoprostone; Dose-Response Relationship, Drug; Enzyme Activation; Fibroblasts; Fibrosis; Gene Expression Regulation; Gingiva; Humans; Immediate-Early Proteins; Intercellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Lung; MAP Kinase Signaling System; Mesangial Cells; Organ Specificity; p38 Mitogen-Activated Protein Kinases; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP3 Subtype; Transforming Growth Factor beta1 | 2007 |