buparlisib and Lung-Neoplasms

buparlisib has been researched along with Lung-Neoplasms* in 15 studies

Trials

2 trial(s) available for buparlisib and Lung-Neoplasms

ArticleYear
Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: A phase I study in patients with advanced non-small cell lung carcinoma.
    European journal of cancer (Oxford, England : 1990), 2019, Volume: 113

    Pre-clinically, phosphoinositide 3-kinase (PI3K) inhibition radiosensitises tumours by increasing intrinsic radiosensitivity and by reducing tumour hypoxia. We assessed whether buparlisib, a class 1 PI3K inhibitor, can be safely combined with radiotherapy in patients with non-small cell lung carcinoma (NSCLC) and investigated its effect on tumour hypoxia.. This was a 3 + 3 dose escalation and dose expansion phase I trial in patients with advanced NSCLC. Buparlisib dose levels were 50 mg, 80 mg and 100 mg once daily orally for 2 weeks, with palliative thoracic radiotherapy (20 Gy in 5 fractions) delivered during week 2. Tumour hypoxic volume (HV) was measured using. Twenty-one patients were recruited with 9 patients evaluable for maximum tolerated dose (MTD) analysis. No dose-limiting toxicity was reported; therefore, 100 mg was declared the MTD, and 10 patients received this dose in the expansion phase. Ninety-four percent of treatment-related adverse events were ≤grade 2 with fatigue (67%), nausea (24%) and decreased appetite (19%) most common per patient. One serious adverse event (grade 3 hypoalbuminaemia) was possibly related to buparlisib. No unexpected radiotherapy toxicity was reported. Ten (67%) of 15 patients evaluable for imaging analysis were responders with 20% median reduction in HV at the MTD.. This is the first clinical trial to combine a PI3K inhibitor with radiotherapy in NSCLC and investigate the effects of PI3K inhibition on tumour hypoxia. This combination was well tolerated and PI3K inhibition reduced hypoxia, warranting investigation into whether this novel class of radiosensitisers can improve radiotherapy outcomes.

    Topics: Adenocarcinoma of Lung; Aged; Aminopyridines; Anorexia; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Chemoradiotherapy; Fatigue; Female; Humans; Lung Neoplasms; Male; Maximum Tolerated Dose; Middle Aged; Misonidazole; Morpholines; Nausea; Phosphoinositide-3 Kinase Inhibitors; Positron Emission Tomography Computed Tomography; Radiation-Sensitizing Agents; Radiotherapy; Tumor Hypoxia

2019
Safety and Efficacy of Buparlisib (BKM120) in Patients with PI3K Pathway-Activated Non-Small Cell Lung Cancer: Results from the Phase II BASALT-1 Study.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2015, Volume: 10, Issue:9

    The phosphatidylinositol 3-kinase (PI3K) pathway promotes tumor growth and treatment resistance in non-small cell lung cancer (NSCLC). The aim of the open-label, two-stage, Phase II study BASALT-1 (NCT01820325) was to investigate the pan-PI3K inhibitor buparlisib (BKM120) in patients with PI3K pathway-activated, relapsed NSCLC.. After prescreening for PI3K pathway activation, patients with PI3K pathway-activated, metastatic, squamous or nonsquamous NSCLC, who had relapsed after prior systemic antineoplastic therapy, were enrolled. In Stage 1, patients received single-agent buparlisib (100 mg/day). A futility analysis was performed independently in each histology group, based on the 12-week progression-free survival rate for the first 30 patients treated in each group being less than 50%. Exploratory biomarker analyses were performed in archival tissue samples and circulating tumor DNA (ctDNA).. Of 1242 prescreened patients, 13.5% exhibited PI3K pathway activation. As of June 5, 2014, 63 patients (30 squamous and 33 nonsquamous) were treated in Stage 1. The 12-week progression-free survival rates were 23.3% (95% confidence interval: 9.9-42.3) and 20.0% (95% confidence interval: 7.7-38.6) in the squamous and nonsquamous groups, respectively. Stage 2 was therefore not initiated in either group. PI3K pathway mutations in ctDNA were more concordant with metastatic tissue than with primary biopsies.. Despite preselecting patients for targeted treatment, BASALT-1 did not meet its primary objective during Stage 1. PI3K pathway activation can be detected using ctDNA, but may not be the main oncogenic driver in NSCLC. Combinations of PI3K inhibitors with other agents may demonstrate greater efficacy than monotherapy.

    Topics: Aged; Aminopyridines; Carcinoma, Non-Small-Cell Lung; Female; Humans; Lung Neoplasms; Male; Middle Aged; Morpholines; Neoplasm Metastasis; Phosphatidylinositol 3-Kinases

2015

Other Studies

13 other study(ies) available for buparlisib and Lung-Neoplasms

ArticleYear
Dual targeting of MEK and PI3K effectively controls the proliferation of human EGFR-TKI resistant non-small cell lung carcinoma cell lines with different genetic backgrounds.
    BMC pulmonary medicine, 2021, Jul-01, Volume: 21, Issue:1

    Molecular targeted therapy for non-small cell lung carcinoma (NSCLC) is restricted due to resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). This study evaluated the effects of dual targeting of MEK and PI3K in human EGFR-TKI resistant NSCLC cell lines.. EGFR-TKI resistant NSCLC cell lines H1975, H460, and A549, with different mutation and amplification status in EGFR, K-RAS, PIK3CA, and MET genes, were treated with a MEK162 (MEK inhibitor) and BKM120 (PI3K inhibitor) combination or a BIBW2992 (EGFR inhibitor) and ARQ197 (MET inhibitor) combination and assayed for cell proliferation, apoptosis, and cell cycle distribution.. Dual targeting of MEK and PI3K efficiently inhibited the cell proliferation, induced apoptosis and the G0/G1 cell cycle, and decreased the phosphorylation of ERK1/2, AKT, S6, and 4E-BP1. H460 cells with K-RAS and PIK3CA mutation were most sensitive to MEK162 and BKM120 combinations. H1975 cells with EGFR and PIK3CA mutation and MET amplification were sensitive to BIBW2992 and ARQ197 combinations.. Dual targeting regulated the proliferation of EGFR-TKI-resistant NSCLC cells, especially mutants in K-RAS and PIK3CA that are promising for EGFR-TKI-resistant NSCLC therapeutics.

    Topics: Afatinib; Aminopyridines; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; ErbB Receptors; Humans; Lung Neoplasms; Mitogen-Activated Protein Kinase Kinases; Morpholines; Mutation; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Pyrrolidinones; Quinolines

2021
Reply to 'The use of buparlisib as a radiosensitiser: What about toxicity?'
    European journal of cancer (Oxford, England : 1990), 2019, Volume: 119

    Topics: Aminopyridines; Humans; Lung Neoplasms; Morpholines; Tumor Hypoxia

2019
The use of buparlisib as a radiosentisiser: What about toxicity?
    European journal of cancer (Oxford, England : 1990), 2019, Volume: 119

    Topics: Aminopyridines; Humans; Lung Neoplasms; Morpholines; Tumor Hypoxia

2019
The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging.
    Oncology reports, 2019, Volume: 41, Issue:5

    Non‑small cell lung cancer (NSCLC) metastasis commonly occurs in bone, which often results in pathological fractures. Sustained phosphoinositide‑3‑kinase (PI3K) signalling promotes the growth of PI3K‑dependent NSCLC and elevates osteoclastogenic potential. The present study investigated the effects of a PI3K inhibitor on NSCLC growth in bone and osteoclast formation, and aimed to determine whether it could control symptoms associated with bone metastasis. A bone metastasis xenograft model was established by implanting NCI‑H460‑luc2 lung cancer cells, which contain a phosphatidylinositol‑​4,5‑bisphosphate 3‑kinase catalytic subunit α mutation, into the right tibiae of mice. After 1 week, the tumours were challenged with a PI3K inhibitor (buparlisib) or blank control for 3 weeks. Tumour growth and burden were longitudinally assessed in vivo via reporter gene bioluminescence imaging (BLI), small animal positron emission tomography/computed tomography (CT) [18F‑fluorodeoxyglucose (18F‑FDG)] and single‑photon emission computed tomography/CT [99mTc‑methylene diphosphonate (99mTc‑MDP)] imaging. Tibia sections of intraosseous NCI‑H460 tumours were analysed by immunohistochemistry (IHC), western blotting and flow cytometry. Dynamic weight bearing (DWB) tests were further performed to examine the improvement of symptoms associated with bone metastasis during the entire study. Administration of buparlisib significantly inhibited the progression of bone metastasis of NSCLC, as evidenced by significantly reduced uptake of 18F‑FDG, 99mTc‑MDP and BLI signals in the treated lesions. In addition, buparlisib appeared to inhibit the expression of tartrate‑resistant acid phosphatase and receptor activator of nuclear factor‑κB ligand, as determined by IHC. Buparlisib also resulted in increased cell apoptosis, as determined by a higher percentage of Annexin V staining and increased caspase 3 expression. Furthermore, buparlisib significantly increased weight‑bearing capacity, as revealed by DWB tests. The PI3K inhibitor, buparlisib, suppressed osteoclast formation in vivo, and exhibited antitumour activity, thus leading to increased weight‑bearing ability in mice with bone metastasis of lung cancer. Therefore, targeting the PI3K pathway may be a potential therapeutic strategy that prevents the structural skeletal damage associated with bone metastasis of lung cancer.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Apoptosis; Bone and Bones; Bone Neoplasms; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Female; Fluorodeoxyglucose F18; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Molecular Imaging; Morpholines; Osteoclasts; Positron Emission Tomography Computed Tomography; Single Photon Emission Computed Tomography Computed Tomography; Treatment Outcome; X-Ray Microtomography

2019
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Activation of the PI3K/mTOR Pathway following PARP Inhibition in Small Cell Lung Cancer.
    PloS one, 2016, Volume: 11, Issue:4

    Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options. We previously found that PARP is overexpressed in SCLC and that targeting PARP reduces cell line and tumor growth in preclinical models. However, SCLC cell lines with PI3K/mTOR pathway activation were relatively less sensitive to PARP inhibition. In this study, we investigated the proteomic changes in PI3K/mTOR and other pathways that occur following PAPR inhibition and/or knockdown in vitro and in vivo. Using reverse-phase protein array, we found the proteins most significantly upregulated following treatment with the PARP inhibitors olaparib and rucaparib were in the PI3K/mTOR pathway (p-mTOR, p-AKT, and pS6) (p≤0.02). Furthermore, amongst the most significantly down-regulated proteins were LKB1 and its targets AMPK and TSC, which negatively regulate the PI3K pathway (p≤0.042). Following PARP knockdown in cell lines, phosphorylated mTOR, AKT and S6 were elevated and LKB1 signaling was diminished. Global ATP concentrations increased following PARP inhibition (p≤0.02) leading us to hypothesize that the observed increased PI3K/mTOR pathway activation following PARP inhibition results from decreased ATP usage and a subsequent decrease in stress response signaling via LKB1. Based on these results, we then investigated whether co-targeting with a PARP and PI3K inhibitor (BKM-120) would work better than either single agent alone. A majority of SCLC cell lines were sensitive to BKM-120 at clinically achievable doses, and cMYC expression was the strongest biomarker of response. At clinically achievable doses of talazoparib (the most potent PARP inhibitor in SCLC clinical testing) and BKM-120, an additive effect was observed in vitro. When tested in two SCLC animal models, a greater than additive interaction was seen (p≤0.008). The data presented here suggest that combining PARP and PI3K inhibitors enhances the effect of either agent alone in preclinical models of SCLC, warranting further investigation of such combinations in SCLC patients.

    Topics: Aminopyridines; AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Cell Line, Tumor; Female; Humans; Indoles; Lung Neoplasms; Mice; Mice, Inbred BALB C; Mice, Nude; Morpholines; Neoplasm Proteins; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phthalazines; Piperazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Protein Serine-Threonine Kinases; Signal Transduction; Small Cell Lung Carcinoma; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays

2016
Combined use of PI3K and MEK inhibitors synergistically inhibits lung cancer with EGFR and KRAS mutations.
    Oncology reports, 2016, Volume: 36, Issue:1

    EGFR and KRAS mutations are the two most common driver mutations in non-small cell lung cancer (NSCLC). Molecular target-based therapy using small molecules such as gefitinib has been used for inhibiting EGFR with good initial responses; however, drug resistance is common when using a mono-targeting strategy. At present, KRAS remains an undruggable target. As such, the development of new drugs targeting the downstream of KRAS and EGFR and their crosstalk pathways is critically needed to effectively treat NSCLC. The present study aimed to elucidate the anticancer effects of PI3K (BKM120) and MEK (PD1056309) inhibitors on NSCLC cell lines with KRAS or EGFR mutations. Inhibition of the EGFR and KRAS downstream P13K pathway using BKM120 significantly inhibited the growth of NSCLC cell lines with either EGFR or KRAS mutations. In addition, significant cell cycle arrest and induction of apoptosis were observed following BKM120 treatment. Notably, although the A549 and H358 NSCLC cell lines harbor the same KRAS mutation, A549 cells were less sensitive than H358 cells in the response to BKM120 treatment. Similarly, PC-9 and H1650 cells harbor the same EGFR mutation, however, H1650 was less sensitive to BKM120. Different sensitivity between NSCLC cell lines with the same oncogenic mutation suggests that multiple crosstalk pathways exit. Combined usage of BKM120 and PD1056309 synergistically enhanced apoptosis in the A549 cells and mildly enhanced apoptosis in the H1650 and H358 cells, suggesting the crosstalk of the MEK pathway with the P13K/Akt pathways in these cell lines. Overall, our findings suggest that inhibition of EGFR and KRAS downstream with a P13K/Akt inhibitor could be useful for treating NSCLC. However, for NSCLC exhibiting crosstalk with other survival pathways, such as the MEK pathway, combination treatment is required.

    Topics: A549 Cells; Aminopyridines; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; ErbB Receptors; Humans; Lung Neoplasms; MAP Kinase Signaling System; Morpholines; Mutation; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins p21(ras); Signal Transduction

2016
Blockade efficacy of MEK/ERK-dependent autophagy enhances PI3K/Akt inhibitor NVP-BKM120's therapeutic effectiveness in lung cancer cells.
    Oncotarget, 2016, Oct-11, Volume: 7, Issue:41

    NVP-BKM120 (BKM120) is a new pan-class I phosphatidylinositol-3 kinase (PI3K) inhibitor and has been tested in clinical trials as an anticancer agent. In this study, we determined whether BKM120 induces autophagy and the impact of autophagy induction on BKM120's growth-inhibitory activity. BKM120 potently induced elevation of autophagosome-bound type II LC3 (LC3-II) protein, predominantly in cell lines insensitive to BKM120, thereby inducing autophagy. The presence of lysosomal protease inhibitor chloroquine further enhanced the levels of LC3-II. BKM120 combined with chloroquine, enhanced growth-inhibitory effects including induction of apoptosis, suggesting that autophagy is a protective mechanism counteracting BKM120's growth-inhibitory activity. Interestingly, BKM120 increased p-ERK1/2 levels. When blocking the activation of this signaling with MEK inhibitors or with knockdown of ERK1/2, the ability of BKM120 to increase LC3-II was attenuated and the growth-inhibitory effects including induction of apoptosis were accordingly enhanced, suggesting that the MEK/ERK activation contributes to BKM120-induced authophagy. In mouse xenograft model, we also found that the combination of BKM120 and PD0325901 synergistically suppressed cell growth in human lung cancer cells. Thus, the current study not only reveals mechanisms accounting for BKM120-induced autophagy, but also suggests an alternative method to enhance BKM120's therapeutic efficacy against non-small cell lung cancer(NSCLC) by blocking autophagy with either a lysosomal protease inhibitor or MEK inhibitor.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chloroquine; Enzyme Inhibitors; Humans; Lung Neoplasms; MAP Kinase Signaling System; Mice; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Xenograft Model Antitumor Assays

2016
PI3 Kinase Pathway and MET Inhibition is Efficacious in Malignant Pleural Mesothelioma.
    Scientific reports, 2016, 09-13, Volume: 6

    Malignant pleural mesothelioma (MPM) is an aggressive cancer that is commonly associated with prior asbestos exposure. Receptor tyrosine kinases (RTKs) such as MET and its downstream target PI3K are overexpressed and activated in a majority of MPMs. Here, we studied the combinatorial therapeutic efficacy of the MET/ALK inhibitor crizotinib, with either a pan-class I PI3K inhibitor, BKM120, or with a PI3K/mTOR dual inhibitor, GDC-0980, in mesothelioma. Cell viability results showed that MPM cells were highly sensitive to crizotinib, BKM120 and GDC-0980 when used individually and their combination was more effective in suppressing growth. Treatment of MPM cells with these inhibitors also significantly decreased cell migration, and the combination of them was synergistic. Treatment with BKM120 alone or in combination with crizotinib induced G2-M arrest and apoptosis. Both crizotinib and BKM120 strongly inhibited the activity of MET and PI3K as evidenced by the decreased phosphorylation of MET, AKT and ribosomal S6 kinase. Using a PDX mouse model, we showed that a combination of crizotinib with BKM120 was highly synergetic in inhibiting MPM tumor growth. In conclusion our findings suggest that dual inhibition of PI3K and MET pathway is an effective strategy in treating MPM as compared to a single agent.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Apoptosis; Bridged Bicyclo Compounds, Heterocyclic; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Cell Proliferation; Crizotinib; Drug Synergism; Female; Humans; Lung Neoplasms; Mesothelioma; Mesothelioma, Malignant; Mice; Mice, Nude; Microtubules; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Pleural Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Pyrimidines; Signal Transduction; Xenograft Model Antitumor Assays

2016
Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations.
    Molecular cancer therapeutics, 2015, Volume: 14, Issue:8

    A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients.

    Topics: Aminopyridines; Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Movement; Cell Proliferation; Class I Phosphatidylinositol 3-Kinases; Disease Models, Animal; Epithelial-Mesenchymal Transition; Humans; Imidazoles; Lung Neoplasms; Morpholines; Mutation; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Quinolines; Signal Transduction; Thiazoles; Xenograft Model Antitumor Assays

2015
The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis.
    Cancer letters, 2013, Sep-28, Volume: 338, Issue:2

    This study focuses on determining whether and how the novel PI3 kinase inhibitor NVP-BKM120 (BKM120) induces apoptosis and enhances TRAIL-induced apoptosis in human lung cancer cells. We found that BKM120 reduced Mcl-1 levels across the tested cell lines along with induction of apoptosis and enhancement of TRAIL-induced apoptosis. Enforced expression of ectopic Mcl-1 significantly attenuated the effects of BKM120 alone or in combination with TRAIL on induction of apoptosis. Thus Mcl-1 downregulation contributes to BKM120-induced apoptosis or enhancement of TRAIL-induced apoptosis. Moreover, we have demonstrated that BMK120 decreases Mcl-1 levels through facilitating its degradation involving a GSK3/FBXW7-dependent mechanism.

    Topics: Aminopyridines; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle Proteins; Cell Line, Tumor; Down-Regulation; Drug Synergism; F-Box Proteins; F-Box-WD Repeat-Containing Protein 7; Glycogen Synthase Kinase 3; HCT116 Cells; Humans; Lung Neoplasms; Morpholines; Myeloid Cell Leukemia Sequence 1 Protein; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Recombinant Proteins; TNF-Related Apoptosis-Inducing Ligand; Ubiquitin-Protein Ligases

2013
Effects of PI3K inhibitor NVP-BKM120 on acquired resistance to gefitinib of human lung adenocarcinoma H1975 cells.
    Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 2013, Volume: 33, Issue:6

    The effects of class I PI3K inhibitor NVP-BKM120 on cell proliferation, cell cycle distribution, cellular apoptosis, phosphorylation of several proteins of the PI3K/AKT signaling pathway and the mRNA expression levels of HIF1-α, VEGF and MMP9 in the acquired gefitinib resistant cell line H1975 were investigated, and whether NVP-BKM120 can overcome the acquired resistance caused by the EGFR T790M mutation and the underlying mechanism were explored. MTT assay was performed to detect the effect of gefitinib, NVP-BKM120, NVP-BKM120 plus 1 μmol/L gefitinib on growth of H1975 cells. The distribution of cell cycle and apoptosis rate of H1975 cells were examined by using flow cytometry. The mRNA expression levels of tumor-related genes such as HIF1-α, VEGF and MMP9 were detected by using real-time quantitative PCR. Western blotting was used to detect the expression level of phosphorylated proteins in the PI3K/AKT signaling pathway, such as Ser473-p-AKT, Ser235/236-p-S6 and Thr70-p-4E-BP1, as well as total AKT, S6 and 4E-BP1. The results showed that the NVP-BKM120 could inhibit the growth of H1975 cells in a concentration-dependent manner, and H1975 cells were more sensitive to NVP-BKM120 than gefitinib (IC50:1.385 vs. 15.09 μmol/L respectively), whereas combination of NVP-BKM120 and gefitinib (1 μmol/L) did not show more obvious effect than NVP-BKM120 used alone on inhibition of cell growth (P>0.05). NVP-BKM120 (1 μmol/L) increased the proportion of H1975 cells in G0-G1 phase and the effect was concentration-dependent, and 2 μmol/L NVP-BKM120 promoted apoptosis of H1975 cells. There was no significant difference in the proportion of H1975 cells in G0-G1 phase and apoptosis rate between NVP-BKM120-treated alone group and NVP-BKM120 plus genfitinib (1 μmol/L)-treated group or between DMSO-treated control group and gefitinib (1 μmol/L)-treated alone group (P>0.05 for all). It was also found that the mRNA expression levels of these genes were down-regulated by NVP-BKM120 (1 μmol/L), and NVP-BKM120 (1 μmol/L) or NVP-BKM120 (1 μmol/L) plus gefitinib (1 μmol/L) obviously inhibited the activation of Akt, S6 and 4E-BP1 as compared with control group, but single use of gefitinib (1 μmol/L) exerted no significant effect. These data suggested that NVP-BKM120 can overcome gefitinib resistance in H1975 cells, and the combination of NVP-BKM120 and gefitinib did not have additive or synergistic effects. It was also concluded that NVP-BKM120 could overcome the acquired resistance

    Topics: Adenocarcinoma; Aminopyridines; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Gefitinib; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Lung Neoplasms; Matrix Metalloproteinase 9; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Quinazolines; RNA, Messenger; Vascular Endothelial Growth Factor A

2013
The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo.
    Cancer letters, 2012, Dec-28, Volume: 325, Issue:2

    This study focuses on determining whether the combination of NYP-BKM120 (BKM120) and RAD001 exerts enhanced therapeutic effect against lung cancer. The combination of BKM120 and RAD001 exerted synergistic inhibitory effects on the growth of lung cancer cells both in culture and in mouse xenograft model. This combination abrogated RAD001-induced Akt phosphorylation and exerted enhanced suppressive effect on 4EBP1 phosphorylation. Collectively, we suggest that the combination of RAD001 and BKM120 may be an effective regimen for treatment of lung cancer, hence warranting further evaluation of the combination in the clinic.

    Topics: Aminopyridines; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Culture Media, Serum-Free; Drug Synergism; Everolimus; G1 Phase; Gene Expression Regulation, Neoplastic; Humans; Immunosuppressive Agents; Lung Neoplasms; Male; Mice; Mice, Nude; Morpholines; Neoplasm Proteins; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-akt; Recombinant Fusion Proteins; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Tumor Stem Cell Assay; Xenograft Model Antitumor Assays

2012