buparlisib and Disease-Models--Animal

buparlisib has been researched along with Disease-Models--Animal* in 14 studies

Other Studies

14 other study(ies) available for buparlisib and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
PI3K: A master regulator of brain metastasis-promoting macrophages/microglia.
    Glia, 2018, Volume: 66, Issue:11

    Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood. Therefore we aimed to quantify the PI3K pathway activity in breast cancer brain metastasis and investigate the effects of PI3K inhibition on the central nervous system (CNS) microenvironment. First, to systematically quantify the PI3K pathway activity in breast cancer brain metastases, we performed a prospective biomarker study using a reverse phase protein array (RPPA). The majority, namely 30 out of 48 (62.5%) brain metastatic tissues examined, revealed high PI3K signaling activity that was associated with a median overall survival (OS) of 9.41 months, while that of patients, whose brain metastases showed only moderate or low PI3K activity, amounted to only 1.93 and 6.71 months, respectively. Second, we identified PI3K as a master regulator of metastasis-promoting macrophages/microglia during CNS colonization; and treatment with buparlisib (BKM120), a pan-PI3K Class I inhibitor with a good blood-brain-barrier penetrance, reduced their metastasis-promoting features. In conclusion, PI3K signaling is active in the majority of breast cancer brain metastases. Since PI3K inhibition does not only affect the metastatic cells but also re-educates the metastasis-promoting macrophages/microglia, PI3K inhibition may hold considerable promise in the treatment of brain metastasis and the respective microenvironment.

    Topics: Adult; Aged; Aminopyridines; Animals; Brain Neoplasms; Breast Neoplasms; Calcium-Binding Proteins; Disease Models, Animal; Enzyme Inhibitors; Female; Gene Expression Regulation, Neoplastic; Glial Fibrillary Acidic Protein; Humans; Macrophages; Mice; Mice, Inbred BALB C; Microfilament Proteins; Microglia; Middle Aged; Morpholines; Phosphatidylinositol 3-Kinases; Signal Transduction; TOR Serine-Threonine Kinases

2018
Novel phosphatidylinositol 3-kinase inhibitor BKM120 enhances the sensitivity of multiple myeloma to bortezomib and overcomes resistance.
    Leukemia & lymphoma, 2017, Volume: 58, Issue:2

    Proteasome inhibitor bortezomib has proven efficacy against multiple myeloma. However, bortezomib activates the phosphatidylinositol 3-kinase/AKT (PI3K/AKT) pathway (which is essential to the development of myeloma), often resulting in drug resistance and disease recurrence. The addition of BKM120 significantly enhanced the apoptotic effects of bortezomib in both bortezomib-sensitive and bortezomib-resistant cells. Treatment with bortezomib alone increased the phosphorylation of AKT (P-AKT), whereas the addition of BKM120 markedly downregulated P-AKT in both bortezomib-sensitive and bortezomib-resistant cells. The clinical relevance of combined treatment with bortezomib and BKM120 was investigated in a xenograft mouse model and in myeloma patients, and the synergy of the combination was confirmed. In conclusion, the addition of BKM120 enhanced the sensitivity of myeloma cells to bortezomib.

    Topics: Aminopyridines; Animals; Apoptosis; Bortezomib; Cell Cycle; Cell Line, Tumor; Disease Models, Animal; Drug Resistance, Neoplasm; Drug Synergism; Humans; Inhibitory Concentration 50; Mice; Morpholines; Multiple Myeloma; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays

2017
Combination of phosphotidylinositol-3-kinase targeting with cetuximab and irradiation: A preclinical study on an orthotopic xenograft model of head and neck cancer.
    Head & neck, 2017, Volume: 39, Issue:1

    The purpose of this study was to investigate the effects of combining the phosphotidylinositol-3-kinase (PI3K) inhibitor buparlisib (BKM)120 with the anti-epidermal growth factor receptor (EGFR) agent cetuximab and radiotherapy (RT) on an orthotopic model of head and neck squamous cell carcinoma (HNSCC).. We evaluated the antitumor efficacy of BKM120, cetuximab, and RT, administered alone or in combination, using the human PIK3CA-mutated HNSCC cell line, CAL33, injected into the floor of the mouth of nude mice.. Compared with control, the BKM120-cetuximab and the BKM120-cetuximab-RT combinations led to the highest tumor inhibition (p < .001). The highest inhibitory effect of treatments on cell proliferation, mitogen-activated protein kinase (MAPK) and PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathways were found with the BKM120-cetuximab association. The association of BKM120 and cetuximab with RT inhibited RT-induced activation of the MAPK pathway.. These results can serve as a preclinical rationale for innovative treatments combining PI3K inhibition with anti-EGFR therapies and irradiation in patients with HNSCC. © 2016 Wiley Periodicals, Inc. Head Neck 39: 151-159, 2017.

    Topics: Aminopyridines; Animals; Antineoplastic Agents, Immunological; Carcinoma, Squamous Cell; Cetuximab; Combined Modality Therapy; Disease Models, Animal; Female; Head and Neck Neoplasms; Mice; Mice, Nude; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Squamous Cell Carcinoma of Head and Neck; Xenograft Model Antitumor Assays

2017
Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through both Tumor-Extrinsic and -Intrinsic Activities.
    Molecular cancer therapeutics, 2017, Volume: 16, Issue:2

    Involuntary weight loss, a part of the cachexia syndrome, is a debilitating comorbidity of cancer and currently has no treatment options. Results from a recent clinical trial at our institution showed that biliary tract cancer patients treated with a MEK inhibitor exhibited poor tumor responses but surprisingly gained weight and increased their skeletal muscle mass. This implied that MEK inhibition might be anticachectic. To test this potential effect of MEK inhibition, we utilized the established Colon-26 model of cancer cachexia and the MEK1/2 inhibitor MEK162. Results showed that MEK inhibition effectively prevented muscle wasting. Importantly, MEK162 retained its ability to spare muscle loss even in mice bearing a Colon-26 clone resistant to the MEK inhibitor, demonstrating that the effects of blocking MEK are at least in part independent of the tumor. Because single-agent MEK inhibitors have been limited as a first-line targeted therapy due to compensatory activation of other oncogenic signaling pathways, we combined MEK162 with the PI3K/Akt inhibitor buparlisib. Results showed that this combinatorial treatment significantly reduced tumor growth due to a direct activity on Colon-26 tumor cells in vitro and in vivo, while also preserving skeletal muscle mass. Together, our results suggest that as a monotherapy, MEK inhibition preserves muscle mass, but when combined with a PI3K/Akt inhibitor exhibits potent antitumor activity. Thus, combinatorial therapy might serve as a new approach for the treatment of cancer cachexia. Mol Cancer Ther; 16(2); 344-56. ©2016 AACRSee related article by Kobayashi et al., p. 357.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Benzimidazoles; Biomarkers; Body Weight; Cachexia; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Humans; Mice; Mitogen-Activated Protein Kinase Kinases; Morpholines; Muscle, Skeletal; Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; Xenograft Model Antitumor Assays

2017
Targeting the PI3K signaling pathway in KRAS mutant colon cancer.
    Cancer medicine, 2016, Volume: 5, Issue:2

    Metastatic colorectal cancer (CRC) patients with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are resistant to monoclonal antibody that targets the epidermal growth factor receptor such as cetuximab. BKM120 targets phosphatidylinositide-3-kinase (PIK3CA), but it is unknown whether BKM120 can reverse cetuximab resistance in KRAS mutant CRC. Human CRC cell lines with KRAS mutations (DLD-1, HCT116, and LoVo) were used to test the effect of cetuximab, BKM120, and cetuximab plus BKM120 on cell proliferation in vitro and in vivo. BKM120 reduced cell proliferation in a concentration-dependent manner in the LoVo (PI3KCA wild type) as well as the HCT116 and DLD1 cells (that carry a PI3KCA mutation). BKM120 only inhibited ERK phosphorylation in LoVo cells (PIK3CA wild type), but not in DLD1 or HCT116 cells at a concentration of 1 μmol/L. Treatment with cetuximab and BKM120 significantly reduced the growth of xenograft tumors originating from KRAS mutant cells compared with cetuximab alone (P = 0.034). BKM120 may overcome cetuximab resistance in colon cancer cells with KRAS mutation.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cetuximab; Colonic Neoplasms; Disease Models, Animal; Drug Synergism; Humans; Male; MAP Kinase Signaling System; Molecular Targeted Therapy; Morpholines; Mutation; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; ras Proteins; Signal Transduction; Tumor Burden; Xenograft Model Antitumor Assays

2016
Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2015, Jan-15, Volume: 21, Issue:2

    Improved therapeutic approaches are needed for the treatment of pancreatic ductal adenocarcinoma (PDAC). As dual MEK and PI3K inhibition is presently being used in clinical trials for patients with PDAC, we sought to test the efficacy of combined targeting of these pathways in PDAC using both in vitro drug screens and genetically engineered mouse models (GEMM).. We performed high-throughput screening of >500 human cancer cell lines (including 46 PDAC lines), for sensitivity to 50 clinically relevant compounds, including MEK and PI3K inhibitors. We tested the top hit in the screen, the MEK1/2 inhibitor, AZD6244, for efficacy alone or in combination with the PI3K inhibitors, BKM120 or GDC-0941, in a Kras(G12D)-driven GEMM that recapitulates the histopathogenesis of human PDAC.. In vitro screens revealed that PDAC cell lines are relatively resistant to single-agent therapies. The response profile to the MEK1/2 inhibitor, AZD6244, was an outlier, showing the highest selective efficacy in PDAC. Although MEK inhibition alone was mainly cytostatic, apoptosis was induced when combined with PI3K inhibitors (BKM120 or GDC-0941). When tested in a PDAC GEMM and compared with the single agents or vehicle controls, the combination delayed tumor formation in the setting of prevention and extended survival when used to treat advanced tumors, although no durable responses were observed.. Our studies point to important contributions of MEK and PI3K signaling to PDAC pathogenesis and suggest that dual targeting of these pathways may provide benefit in some patients with PDAC. Clin Cancer Res; 21(2); 396-404. ©2014 AACR.

    Topics: Aminopyridines; Animals; Antineoplastic Agents; Benzimidazoles; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Disease Models, Animal; Drug Screening Assays, Antitumor; Drug Synergism; Erlotinib Hydrochloride; Humans; MAP Kinase Kinase Kinases; Mice, Transgenic; Morpholines; Pancreatic Neoplasms; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Quinazolines

2015
The effect of the PI3K inhibitor BKM120 on tumour growth and osteolytic bone disease in multiple myeloma.
    Leukemia research, 2015, Volume: 39, Issue:3

    The plasma cell malignancy multiple myeloma (MM) is unique amongst haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BKM120 (Buparlisib, Novartis) is a PI3K inhibitor that is currently undergoing clinical evaluation in several tumour settings. In this study, we have examined the anti-tumorigenic effects of BKM120 in an immunocompetent mouse model of MM and its effects on osteoblast and osteoclast formation and function. BKM120 treatment (40 mg/kg) resulted in a significant decrease in serum paraprotein and tumour burden, and μCT analysis of the proximal tibia revealed a significant reduction in the number of osteolytic bone lesions in BKM120-treated animals. BKM120 also mediated a significant increase in serum levels of the osteoblast marker P1NP, and a significant decrease in serum levels of the osteoclast marker TRAcP5. In vitro, BKM120 decreased MM plasma cell proliferation, osteoclast formation and function, and promoted osteoblast formation and function. These findings suggest that, in addition to its anti-tumour properties, BKM120 could be used to treat osteolytic bone disease in MM patients.

    Topics: Aminopyridines; Animals; Apoptosis; Blotting, Western; Bone Diseases; Cell Cycle; Cell Proliferation; Disease Models, Animal; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Humans; Mice; Mice, Inbred C57BL; Morpholines; Multiple Myeloma; Osteoclasts; Osteolysis; Phosphoinositide-3 Kinase Inhibitors; Tumor Burden; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2015
Mouse model to clarify ovarian clear-cell carcinoma.
    Lab animal, 2015, Volume: 44, Issue:3

    Topics: Aminopyridines; Animals; Carcinoma; Class I Phosphatidylinositol 3-Kinases; Disease Models, Animal; DNA-Binding Proteins; Female; Humans; Mice; Morpholines; Nuclear Proteins; Ovarian Neoplasms; Phosphatidylinositol 3-Kinases; Transcription Factors

2015
Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations.
    Molecular cancer therapeutics, 2015, Volume: 14, Issue:8

    A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients.

    Topics: Aminopyridines; Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Movement; Cell Proliferation; Class I Phosphatidylinositol 3-Kinases; Disease Models, Animal; Epithelial-Mesenchymal Transition; Humans; Imidazoles; Lung Neoplasms; Morpholines; Mutation; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Quinolines; Signal Transduction; Thiazoles; Xenograft Model Antitumor Assays

2015
Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis.
    Neoplasia (New York, N.Y.), 2015, Volume: 17, Issue:7

    Chronic inflammation is an important process leading to tumorigenesis. Therefore, targeting and controlling inflammation can be a promising cancer therapy. Inflammation is often caused by a variety of inflammatory cytokine such as the interleukin (IL)-6, a pleiotrophic cytokine known to be involved in the tumorigenesis. In this study, an in vivo hepatic tumorigenesis model of zebrafish was generated to demonstrate a direct consequence of the human IL6 expression causing hepatocarcinogenesis. To do this, an elevated expression of the hIL6 gene was established to specifically target the zebrafish hepatocytes by transgenesis. Interestingly, the elevated hIL6 expression caused the chronic inflammation which results in a massive infiltration of inflammatory cells. This eventually resulted in the generation of various dysplastic lesions such as clear cell, small cell, and large cell changes, and also eosinophilic and basophilic foci of hepatocellular alteration. Hepatocellular carcinoma was then developed in the transgenic zebrafish. Molecular characterization revealed upregulation of the downstream components involved in the IL6-mediated signaling pathways, especially PI3K/Akt and JAK/STAT3 pathways. Further investigation indicated that PI3K was the most reactive to the infiltrated inflammatory cells and dysplasia with large cell change, whereas STAT3 was heavily activated in the region with dysplastic foci, suggesting that the JAK/STAT3 pathway was mainly implicated in the hepatic tumorigenesis in the current model. Our present study provides an in vivo evidence of the relationship between chronic inflammation and tumorigenesis and reinforces the pivotal role of IL6 in the inflammation-associated hepatocarcinogenesis.

    Topics: Aminopyridines; Animals; Carcinoma, Hepatocellular; Cell Transformation, Neoplastic; Cyclic S-Oxides; Disease Models, Animal; Enzyme Activation; Humans; Inflammation; Interleukin-6; Janus Kinases; Liver; Liver Neoplasms; Morpholines; Niclosamide; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Signal Transduction; STAT3 Transcription Factor; Zebrafish; Zebrafish Proteins

2015
Disruption of follicular dendritic cells-follicular lymphoma cross-talk by the pan-PI3K inhibitor BKM120 (Buparlisib).
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2014, Jul-01, Volume: 20, Issue:13

    To uncover the signaling pathways underlying follicular lymphoma-follicular dendritic cells (FL-FDC) cross-talk and its validation as new targets for therapy.. FL primary cells and cell lines were cocultured in the presence or absence of FDC. After 24 and 48 hours, RNA was isolated from FL cells and subjected to gene expression profiling (GEP) and data meta-analysis using DAVID and GSEA softwares. Blockade of PI3K pathway by the pan-PI3K inhibitor BKM120 (buparlisib; Novartis Pharmaceutical Corporation) and the effect of PI3K inhibition on FL-FDC cross-talk were analyzed by means of ELISA, RT-PCR, human umbilical vein endothelial cell tube formation, adhesion and migration assays, Western blot, and in vivo studies in mouse FL xenografts.. GEP of FL-FDC cocultures yields a marked modulation of FL transcriptome by FDC. Pathway assignment by DAVID and GSEA software uncovered an overrepresentation of genes related to angiogenesis, cell adhesion, migration, and serum-response factors. We demonstrate that the addition of the pan-PI3K inhibitor BKM120 to the cocultures was able to downregulate the expression and secretion of proangiogenic factors derived from FL-FDC cocultures, reducing in vitro and in vivo angiogenesis. Moreover, BKM120 efficiently counteracts FDC-mediated cell adhesion and impedes signaling and migration induced by the chemokine CXCL12. BKM120 inhibits both constitutive PI3K/AKT pathway and FDC- or CXCL12-induced PI3K/AKT pathway, hampers FDC survival signaling, and reduces cell proliferation of FL cells in vitro and in mouse xenografts.. These data support the use of BKM120 in FL therapy to counteract microenvironment-related survival signaling in FL cells.

    Topics: Aminopyridines; Animals; Cell Adhesion; Cell Communication; Cell Line, Tumor; Cell Movement; Cell Survival; Chemokine CXCL12; Cluster Analysis; Dendritic Cells, Follicular; Disease Models, Animal; Extracellular Matrix; Gene Expression Profiling; Humans; Lymphoma, Follicular; Mice; Morpholines; Neovascularization, Pathologic; Phosphoinositide-3 Kinase Inhibitors; Receptors, CXCR4; Signal Transduction; Tumor Burden; Xenograft Model Antitumor Assays

2014
The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome.
    Cell cycle (Georgetown, Tex.), 2013, Dec-01, Volume: 12, Issue:23

    The PTEN hamartoma tumor syndrome (PHTS) is a complex disorder caused by germline inactivating mutations of the tumor suppressor gene PTEN. Loss of PTEN function leads to unimpeded phosphatidylinositol-3'-kinase (PI3K) activity and PI3K-driven cell division. Individuals with PHTS develop benign hamartomas in various tissues and have an increased risk of developing malignant diseases. Notably, no effective therapy currently exists for this disorder. Using both genetic mouse models and pharmacological approaches, we recently demonstrated that PI3K p110α and p110β isoforms play spatially distinct but concerted roles in the skin that are required for the development and maintenance of PHTS. We also show that treatment with a pan-PI3K inhibitor prevents the development of skin PHTS and reverses advanced-stage skin hamartomas in vivo. Here, we report that genetic ablation of only 3 out of 4 p110 alleles is sufficient to block the development of skin hamartomas resulting from the complete loss of Pten in mice. Similar to our findings in skin, we now also show that mammary gland neoplastic lesions can be prevented or reversed upon PI3K inhibition in our PHTS mouse model. Our data suggest a possible route to chemoprevention using reduced doses of PI3K inhibitors for PTEN-deficient carrier patients.

    Topics: Alleles; Aminopyridines; Animals; Breast Neoplasms; Class Ia Phosphatidylinositol 3-Kinase; Disease Models, Animal; Female; Gene Dosage; Genotype; Hamartoma Syndrome, Multiple; Mice; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Skin Neoplasms

2013
An animal model of MYC-driven medulloblastoma.
    Cancer cell, 2012, Feb-14, Volume: 21, Issue:2

    Medulloblastoma (MB) is the most common malignant brain tumor in children. Patients whose tumors exhibit overexpression or amplification of the MYC oncogene (c-MYC) usually have an extremely poor prognosis, but there are no animal models of this subtype of the disease. Here, we show that cerebellar stem cells expressing Myc and mutant Trp53 (p53) generate aggressive tumors following orthotopic transplantation. These tumors consist of large, pleiomorphic cells and resemble human MYC-driven MB at a molecular level. Notably, antagonists of PI3K/mTOR signaling, but not Hedgehog signaling, inhibit growth of tumor cells. These findings suggest that cerebellar stem cells can give rise to MYC-driven MB and identify a novel model that can be used to test therapies for this devastating disease.

    Topics: Aminopyridines; Animals; Cell Proliferation; Cell Transformation, Neoplastic; Cerebellar Neoplasms; Cerebellum; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Genes, p53; Imidazoles; Medulloblastoma; Mice; Morpholines; Neural Stem Cells; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-myc; Quinolines; TOR Serine-Threonine Kinases

2012