btz-043 has been researched along with Tuberculosis* in 10 studies
4 review(s) available for btz-043 and Tuberculosis
Article | Year |
---|---|
Tuberculosis Drug Discovery: Challenges and New Horizons.
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good Topics: Antitubercular Agents; COVID-19 Drug Treatment; Drug Discovery; Humans; Mycobacterium tuberculosis; Tuberculosis | 2022 |
Molecule Property Analyses of Active Compounds for
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Topics: Antitubercular Agents; Bacterial Proteins; Drug Discovery; Drug Resistance, Bacterial; Humans; Mycobacterium tuberculosis; Nitroimidazoles; Nucleoside-Phosphate Kinase; Structure-Activity Relationship; Tuberculosis | 2020 |
SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development.
Despite enormous efforts have been made in the hunt for new drugs, tuberculosis (TB) still remains the first bacterial cause of mortality worldwide, causing an estimated 8.6 million new cases and 1.3 million deaths in 2012. Multi-drug resistant-TB strains no longer respond to first-line drugs and are inexorably spreading with an estimated 650,000 cases as well as extensively-drug resistant-TB strains, which are resistant to any fluoroquinolone and at least one of the second-line drugs, with 60,000 cases. Thus the discovery and development of new medicines is a major keystone for tuberculosis treatment and control. After decades of dormancy in the field of TB drug development, recent efforts from various groups have generated a promising TB drug pipeline. Several new therapeutic agents are concurrently studied in clinical trials together with much activity in the hittolead and lead optimization stages. In this article we will review the recent advances in TB drug discovery with a special focus on structure activity relationship studies of the most advanced compound classes. Topics: Animals; Antitubercular Agents; Humans; Mycobacterium tuberculosis; Structure-Activity Relationship; Tuberculosis; Tuberculosis, Multidrug-Resistant | 2014 |
Tuberculosis: the drug development pipeline at a glance.
Tuberculosis is a major disease causing every year 1.8 million deaths worldwide and represents the leading cause of mortality resulting from a bacterial infection. Introduction in the 60's of first-line drug regimen resulted in the control of the disease and TB was perceived as defeating. However, since the progression of HIV leading to co-infection with AIDS and the emergence of drug resistant strains, the need of new anti-tuberculosis drugs was not overstated. However in the past 40 years any new molecule did succeed in reaching the market. Today, the pipeline of potential new treatments has been fulfilled with several compounds in clinical trials or preclinical development with promising activities against sensitive and resistant Mycobacterium tuberculosis strains. Compounds as gatifloxacin, moxifloxacin, metronidazole or linezolid already used against other bacterial infections are currently evaluated in clinical phases 2 or 3 for treating tuberculosis. In addition, analogues of known TB drugs (PA-824, OPC-67683, PNU-100480, AZD5847, SQ609, SQ109, DC-159a) and new chemical entities (TMC207, BTZ043, DNB1, BDM31343) are under development. In this review, we report the chemical synthesis, mode of action when known, in vitro and in vivo activities and clinical data of all current small molecules targeting tuberculosis. Topics: Animals; Antitubercular Agents; Clinical Trials as Topic; Drug Discovery; Humans; Tuberculosis | 2012 |
6 other study(ies) available for btz-043 and Tuberculosis
Article | Year |
---|---|
Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) Inhibitors.
In search of novel drugs against tuberculosis, we previously discovered and profiled a novel hydantoin-based family that demonstrated highly promising in vitro potency against Topics: Alcohol Oxidoreductases; Animals; Antitubercular Agents; Bacterial Proteins; Female; Hep G2 Cells; Humans; Hydantoins; Mice; Mice, Inbred C57BL; Mycobacterium tuberculosis; Nuclear Magnetic Resonance, Biomolecular; Tuberculosis | 2020 |
Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis.
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), a vital enzyme for cell wall synthesis, plays a crucial role in the formation of lipoarabinomannan and arabinogalactan. It was first reported as a druggable target on the basis of inhibitors discovered in high throughput screening of a drug library. Since then, inhibitors with different types of chemical scaffolds have been reported for their activity against this enzyme. Formation of a covalent or noncovalent bond by the interacting ligand with the enzyme causes loss of its catalytic activity which ultimately leads to the death of the mycobacterium. This Perspective describes various DprE1 inhibitors as anti-TB agents reported to date. Topics: Alcohol Oxidoreductases; Antitubercular Agents; Bacterial Proteins; Drug Development; Humans; Mycobacterium tuberculosis; Tuberculosis | 2018 |
Identification and Profiling of Hydantoins-A Novel Class of Potent Antimycobacterial DprE1 Inhibitors.
Tuberculosis is the leading cause of death worldwide from infectious diseases. With the development of drug-resistant strains of Mycobacterium tuberculosis, there is an acute need for new medicines with novel modes of action. Herein, we report the discovery and profiling of a novel hydantoin-based family of antimycobacterial inhibitors of the decaprenylphospho-β-d-ribofuranose 2-oxidase (DprE1). In this study, we have prepared a library of more than a 100 compounds and evaluated them for their biological and physicochemical properties. The series is characterized by high enzymatic and whole-cell activity, low cytotoxicity, and a good overall physicochemical profile. In addition, we show that the series acts via reversible inhibition of the DprE1 enzyme. Overall, the novel compound family forms an attractive base for progression to further stages of optimization and may provide a promising drug candidate in the future. Topics: Actinobacteria; Alcohol Oxidoreductases; Antitubercular Agents; Bacterial Proteins; Drug Stability; Enzyme Inhibitors; Hep G2 Cells; High-Throughput Screening Assays; Humans; Hydantoins; Macrophages; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Reproducibility of Results; Structure-Activity Relationship; Tuberculosis | 2018 |
Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins.
Tuberculosis (TB) remains one of the most threatening diseases in the world and the need for development of new therapies is dire. Herein we describe the rationale for the design and subsequent syntheses and studies of conjugates between pBTZ and both the imidazopyridine and cephalosporin scaffolds. Overall some compounds exhibited notable anti-TB activity in the range of 2-0.2 μM in the Microplate Alamar Blue (MABA) Assay. Topics: Antitubercular Agents; Dose-Response Relationship, Drug; Drug Design; Imidazoles; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Piperazines; Pyridines; Structure-Activity Relationship; Thiazines; Tuberculosis | 2016 |
Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives.
Tuberculosis (TB) remains a major human health problem. New therapeutic antitubercular agents are urgent needed to control the global tuberculosis pandemic. We synthesized a new series of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives and evaluated their anti-mycobacterial activities against Mycobacterium tuberculosis H37Ra as well as their druggabilities. The results showed that most of these derivatives, especially the compounds with simple alkyl side chains, exhibited good antitubercular activities and favorable aqueous solubilities with no obvious cytotoxicity. It suggested that the 4-carbonyl piperazine substituents in benzothiazinone scaffold were well tolerated, in which the compound 8h, with an antitubercular activity of MIC 0.008 μM, exhibited an excellent aqueous solubility of 104 μg/mL, which was 100-fold better than the potent DprE1 inhibitor Comp.1 (BTZ038), also more soluble than PBTZ169. Topics: Animals; Antitubercular Agents; Chlorocebus aethiops; Dose-Response Relationship, Drug; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium tuberculosis; Piperazine; Piperazines; Structure-Activity Relationship; Thiazines; Tuberculosis; Vero Cells | 2015 |
Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents.
N-Alkyl and heterocycle substituted 1,3-benzothiazin-4-one (BTZ) derivatives were synthesized. The anti-mycobacterial activities of these compounds were evaluated by determination of minimal inhibitory concentration (MIC) for Mycobacterium tuberculosis H37Ra and M. tuberculosis H37Rv. It was found that an extended or branched alkyl chain analog could enhance the potency, and activities of N-alkyl substituted BTZs were not affected by either nitro or trifluoromethyl at 6-position. Trifluoromethyl plays an important role in maintaining anti-tubercular activity in the piperazine or piperidine analogs. Compound 8o, which contains an azaspirodithiolane group, showed a MIC of 0.0001 μM against M. tuberculosis H37Rv, 20-fold more potent than BTZ043 racemate. These results suggested that the volume and lipophilicity of the substituents were important in maintaining activity. In addition, compound 8o was nontoxic to Vero cells and orally bioavailable in a preliminary pharmacokinetics study. Topics: Animals; Antitubercular Agents; Chlorocebus aethiops; Humans; Mycobacterium tuberculosis; Rats; Rats, Sprague-Dawley; Spiro Compounds; Structure-Activity Relationship; Thiazines; Tuberculosis; Vero Cells | 2013 |