bryostatin-1 has been researched along with HIV-Infections* in 19 studies
1 trial(s) available for bryostatin-1 and HIV-Infections
Article | Year |
---|---|
Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy.
The protein kinase C (PKC) agonist bryostatin-1 has shown significant ex-vivo potency to revert HIV-1 latency, compared with other latency reversing agents (LRA). The safety of this candidate LRA remains to be proven in treated HIV-1-infected patients.. In this pilot, double-blind phase I clinical-trial (NCT 02269605), we included aviraemic HIV-1-infected patients on triple antiretroviral therapy to evaluate the effects of two different single doses of bryostatin-1 (10 or 20 μg/m) compared with placebo.. Twelve patients were included, four in each arm. Bryostatin-1 was well tolerated in all participants. Two patients in the 20 μg/m arm developed grade 1 headache and myalgia. No detectable increases of cell-associated unspliced (CA-US) HIV-1-RNA were observed in any study arm, nor differences in HIV-1 mRNA dynamics between arms (P = 0.44). The frequency of samples with low-level viraemia did not differ between arms and low-level viraemia did not correlate with CA-US HIV-1-RNA levels (P = 0.676). No changes were detected on protein kinase C (PKC) activity and in biomarkers of inflammation (sCD14 and interleukin-6) in any study arm. After the single dose of bryostatin-1, plasma concentrations were under detection limits in all the patients in the 10 μg/m arm, and below 50 pg/ml (0.05 nmol/l) in those in the 20 μg/m arm.. Bryostatin-1 was safe at the single doses administered. However, the drug did not show any effect on PKC activity or on the transcription of latent HIV, probably due to low plasma concentrations. This study will inform next trials aimed at assessing higher doses, multiple dosing schedules or combination studies with synergistic drugs. Topics: Adult; Anti-Retroviral Agents; Bryostatins; Double-Blind Method; Drug-Related Side Effects and Adverse Reactions; Enzyme Activators; Female; HIV Infections; Humans; Male; Middle Aged; Pilot Projects; Placebos; Treatment Outcome; Virus Latency | 2016 |
18 other study(ies) available for bryostatin-1 and HIV-Infections
Article | Year |
---|---|
Impact of latency-reversing agents on human macrophage physiology.
HIV-1 eradication is hindered by the presence of inducible long-lived reservoirs of latently infected cells which rapidly disseminate viral particles upon treatment interruption. Eliminating these reservoirs by the so-called shock and kill strategy represents a crucial concept toward an HIV-1 cure. Several molecules called latency-reversing agents (LRAs) are under intensive investigations to reactivate virus gene expression. These studies are mainly conducted on CD4. We investigated the impact of the protein kinase C (PKC) activator bryostatin-1, bromodomain inhibitor JQ1 and histone deacetylase inhibitor romidepsin used either alone or in combination on human primary monocyte-derived macrophages (MDMs).. We demonstrate that bryostatin-1, JQ1, and romidepsin or their combinations are not toxic at nanomolar concentrations but induce metabolic and morphologic alterations of MDMs. Bryostatin-1 triggered the secretion of pro-inflammatory cytokines, while JQ-1 decreased it. Phagocytosis and endocytosis were modestly impaired upon bryostatin-1 treatment whereas efferocytosis was markedly downregulated by romidepsin. Despite its pro-inflammatory profile, bryostatin-1 did not induce classically activated macrophage markers. Finally, we reveal that conditioned medium from bryostatin-1-treated macrophages did not potentiate its reactivation feature.. Our study reveals that LRAs can diversely impact basic physiologic features of human primary macrophages and could potentially decrease reactivation of nearby CD4 Topics: Bryostatins; CD4-Positive T-Lymphocytes; HIV Infections; HIV Seropositivity; Humans; Macrophages; Virus Activation; Virus Latency | 2023 |
Secreted factors induced by PKC modulators do not indirectly cause HIV latency reversal.
HIV can establish a long-lived latent infection in cells harboring integrated non-expressing proviruses. Latency reversing agents (LRAs), including protein kinase C (PKC) modulators, can induce expression of latent HIV, thereby reducing the latent reservoir in animal models. However, PKC modulators such as bryostatin-1 also cause cytokine upregulation in peripheral blood mononuclear cells (PBMCs), including cytokines that might independently reverse HIV latency. To determine whether cytokines induced by PKC modulators contribute to latency reversal, primary human PBMCs were treated with bryostatin-1 or the bryostatin analog SUW133, a superior LRA, and supernatant was collected. As anticipated, LRA-treated cell supernatant contained increased levels of cytokines compared to untreated cell supernatant. However, exposure of latently-infected cells with this supernatant did not result in latency reactivation. These results indicate that PKC modulators do not have significant indirect effects on HIV latency reversal in vitro and thus are targeted in their latency reversing ability. Topics: Animals; Bryostatins; CD4-Positive T-Lymphocytes; Cytokines; HIV Infections; HIV-1; Humans; Leukocytes, Mononuclear; Virus Activation; Virus Latency | 2023 |
The Novel PKC Activator 10-Methyl-Aplog-1 Combined with JQ1 Induced Strong and Synergistic HIV Reactivation with Tolerable Global T Cell Activation.
The presence of latent human immunodeficiency virus (HIV) reservoirs is a major obstacle to a cure. The "shock and kill" therapy is based on the concept that latent reservoirs in HIV carriers with antiretroviral therapy are reactivated by latency-reversing agents (LRAs), followed by elimination due to HIV-associated cell death or killing by virus-specific cytotoxic T lymphocytes. Protein kinase C (PKC) activators are considered robust LRAs as they efficiently reactivate latently infected HIV. However, various adverse events hamper the intervention trial of PKC activators as LRAs. We found in this study that a novel PKC activator, 10-Methyl-aplog-1 (10MA-1), combined with an inhibitor of bromodomain and extra-terminal domain motifs, JQ1, strongly and synergistically reactivated latently infected HIV. Notably, higher concentrations of 10MA-1 alone induced the predominant side effect, i.e., global T cell activation as defined by CD25 expression and pro-inflammatory cytokine production in primary CD4+ T lymphocytes; however, JQ1 efficiently suppressed the 10MA-1-induced side effect in a dose-dependent manner. Considering the reasonable accessibility and availability of 10MA-1 since the chemical synthesis of 10MA-1 requires fewer processes than that of bryostatin 1 or prostratin, our results suggest that the combination of 10MA-1 with JQ1 may be a promising pair of LRAs for the clinical application of the "shock and kill" therapy. Topics: Anti-HIV Agents; Azepines; Bryostatins; CD4-Positive T-Lymphocytes; Cell Line; HIV Infections; HIV-1; Humans; Lymphocyte Activation; Phorbol Esters; Signal Transduction; Triazoles; Virus Latency | 2021 |
Selective BCL-X
HIV persists, despite immune responses and antiretroviral therapy, in viral reservoirs that seed rebound viremia if therapy is interrupted. Previously, we showed that the BCL-2 protein contributes to HIV persistence by conferring a survival advantage to reservoir-harboring cells. Here, we demonstrate that many of the BCL-2 family members are overexpressed in HIV-infected CD4 Topics: bcl-X Protein; Benzothiazoles; Bryostatins; CD4-Positive T-Lymphocytes; Cells, Cultured; Disease Reservoirs; HIV Infections; HIV-1; Humans; Isoquinolines; Virus Latency; Virus Replication | 2021 |
4-Deoxyphorbol inhibits HIV-1 infection in synergism with antiretroviral drugs and reactivates viral reservoirs through PKC/MEK activation synergizing with vorinostat.
Latent HIV reservoirs are the main obstacle to eradicate HIV infection. One strategy proposes to eliminate these viral reservoirs by pharmacologically reactivating the latently infected T cells. We show here that a 4-deoxyphorbol ester derivative isolated from Euphorbia amygdaloides ssp. semiperfoliata, 4β-dPE A, reactivates HIV-1 from latency and could potentially contribute to decrease the viral reservoir. 4β-dPE A shows two effects in the HIV replication cycle, infection inhibition and HIV transactivation, similarly to other phorboids PKC agonists such PMA and prostratin and to other diterpene esters such SJ23B. Our data suggest 4β-dPE A is non-tumorigenic, unlike the related compound PMA. As the compounds are highly similar, the lack of tumorigenicity by 4β-dPE A could be due to the lack of a long side lipophilic chain that is present in PMA. 4β-dPE activates HIV transcription at nanomolar concentrations, lower than the concentration needed by other latency reversing agents (LRAs) such as prostratin and similar to bryostatin. PKCθ/MEK activation is required for the transcriptional activity, and thus, anti-latency activity of 4β-dPE A. However, CD4, CXCR4 and CCR5 receptors down-regulation effect seems to be independent of PCK/MEK, suggesting the existence of at least two different targets for 4β-dPE A. Furthermore, NF-κb transcription factor is involved in 4β-dPE HIV reactivation, as previously shown for other PKCs agonists. We also studied the effects of 4β-dPE A in combination with other LRAs. When 4β-dPE A was combined with another PKC agonists such as prostratin an antagonic effect was achieved, while, when combined with an HDAC inhibitor such as vorinostat, a strong synergistic effect was obtained. Interestingly, the latency reversing effect of the combination was synergistically diminishing the EC Topics: Anti-HIV Agents; Bryostatins; CD4-Positive T-Lymphocytes; Cell Survival; Drug Synergism; HIV Infections; HIV-1; Humans; Jurkat Cells; Mitogen-Activated Protein Kinase Kinases; Phorbol Esters; Protein Kinase C; Signal Transduction; Virus Activation; Virus Latency; Vorinostat | 2020 |
Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment.
The major obstacle impeding human immunodeficiency virus-1 (HIV-1) eradication in antiretroviral treatment (ART) treated HIV-1 subjects is the establishment of long-lived latently infected resting CD4. J89GFP lymphocyte and THP89GFP monocyte derived cell lines latently infected with HIV-1 p89GFP were used as an in vitro model of latency for our study. Viability assays by 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were performed to determine the working concentrations of dendrimers and LRAs. Both cell lines were treated with G1-S4, G2-S16 and G3-S16 either alone or in combination with bryostatin (BRY), romidepsin (RMD) or panobinostat (PNB) for 24 and 48 h. The expression pattern of GFP was measured by flow cytometry and referred as measure of viral reactivation.. The combination treatment of the dendrimers with the protein kinase C (PKC) agonist did not modify the antilatency activity in J89GFP lymphocyte cell line. Interestingly enough, G3-S16 dendrimer alone and its combination with BRY, RMD or PNB showed a significant increased expression of GFP in the THP89GFP monocyte cell line.. We showed for the first time that nanoparticles, in this case, G3-S16 anionic carbosilan dendrimer may play an important role in new treatments against HIV-1 infection. Topics: Adjuvants, Immunologic; Anti-HIV Agents; Bryostatins; Cell Line; Cell Survival; Dendrimers; Depsipeptides; Drug Liberation; Drug Therapy, Combination; HIV Infections; HIV-1; Humans; Lymphocytes; Monocytes; Panobinostat; Particle Size; Polyelectrolytes; Polymers; Silanes; Surface Properties | 2019 |
Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression.
Combinations of drugs that affect distinct mechanisms of HIV latency aim to induce robust latency reversal leading to cytopathicity and elimination of the persistent HIV reservoir. Thus far, attempts have focused on combinations of protein kinase C (PKC) agonists and pan-histone deacetylase inhibitors (HDIs) despite the knowledge that HIV gene expression is regulated by class 1 histone deacetylases. We hypothesized that class 1-selective HDIs would promote more robust HIV latency reversal in combination with a PKC agonist than pan-HDIs because they preserve the activity of proviral factors regulated by non-class 1 histone deacetylases. Here, we show that class 1-selective agents used alone or with the PKC agonist bryostatin-1 induced more HIV protein expression per infected cell. In addition, the combination of entinostat and bryostatin-1 induced viral outgrowth, whereas bryostatin-1 combinations with pan-HDIs did not. When class 1-selective HDIs were used in combination with pan-HDIs, the amount of viral protein expression and virus outgrowth resembled that of pan-HDIs alone, suggesting that pan-HDIs inhibit robust gene expression induced by class 1-selective HDIs. Consistent with this, pan-HDI-containing combinations reduced the activity of NF-κB and Hsp90, two cellular factors necessary for potent HIV protein expression, but did not significantly reduce overall cell viability. An assessment of viral clearance from Topics: Bryostatins; Cells, Cultured; Female; Gene Expression Regulation, Viral; Histone Deacetylase Inhibitors; Histone Deacetylases; HIV Infections; HIV-1; HSP90 Heat-Shock Proteins; Humans; Male; NF-kappa B; Protein Kinase C; Virus Latency | 2018 |
Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents.
HIV latency in resting CD4+ T cell represents a key barrier preventing cure of the infection with antiretroviral drugs alone. Latency reversing agents (LRAs) can activate HIV expression in latently infected cells, potentially leading to their elimination through virus-mediated cytopathic effects, host immune responses, and/or therapeutic strategies targeting cells actively expressing virus. We have recently described several structurally simplified analogs of the PKC modulator LRA bryostatin (termed bryologs) designed to improve synthetic accessibility, tolerability in vivo, and efficacy in inducing HIV latency reversal. Here we report the comparative performance of lead bryologs, including their effects in reducing cell surface expression of HIV entry receptors, inducing proinflammatory cytokines, inhibiting short-term HIV replication, and synergizing with histone deacetylase inhibitors to reverse HIV latency. These data provide unique insights into structure-function relationships between A- and B-ring bryolog modifications and activities in primary cells, and suggest that bryologs represent promising leads for preclinical advancement. Topics: Bryostatins; CD4-Positive T-Lymphocytes; Cells, Cultured; Cytokines; Drug Design; Histone Deacetylase Inhibitors; HIV Infections; HIV-1; Humans; Leukocytes, Mononuclear; Virus Activation; Virus Latency; Virus Replication | 2018 |
In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell "kick" and "kill" in strategy for virus eradication.
The ability of HIV to establish a long-lived latent infection within resting CD4+ T cells leads to persistence and episodic resupply of the virus in patients treated with antiretroviral therapy (ART), thereby preventing eradication of the disease. Protein kinase C (PKC) modulators such as bryostatin 1 can activate these latently infected cells, potentially leading to their elimination by virus-mediated cytopathic effects, the host's immune response and/or therapeutic strategies targeting cells actively expressing virus. While research in this area has focused heavily on naturally-occurring PKC modulators, their study has been hampered by their limited and variable availability, and equally significantly by sub-optimal activity and in vivo tolerability. Here we show that a designed, synthetically-accessible analog of bryostatin 1 is better-tolerated in vivo when compared with the naturally-occurring product and potently induces HIV expression from latency in humanized BLT mice, a proven and important model for studying HIV persistence and pathogenesis in vivo. Importantly, this induction of virus expression causes some of the newly HIV-expressing cells to die. Thus, designed, synthetically-accessible, tunable, and efficacious bryostatin analogs can mediate both a "kick" and "kill" response in latently-infected cells and exhibit improved tolerability, therefore showing unique promise as clinical adjuvants for HIV eradication. Topics: Anti-HIV Agents; Bryostatins; CD4-Positive T-Lymphocytes; HIV Infections; HIV-1; Humans; Virus Activation; Virus Latency | 2017 |
Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV.
Bryostatin 1 is an exceedingly scarce marine-derived natural product that is in clinical development directed at HIV/AIDS eradication, cancer immunotherapy, and the treatment of Alzheimer's disease. Despite this unique portfolio of indications, its availability has been limited and variable, thus impeding research and clinical studies. Here, we report a total synthesis of bryostatin 1 that proceeds in 29 total steps (19 in the longest linear sequence, >80% average yield per step), collectively produces grams of material, and can be scaled to meet clinical needs (~20 grams per year). This practical solution to the bryostatin supply problem also opens broad, facile, and efficient access to derivatives and potentially superior analogs. Topics: Adjuvants, Immunologic; Anti-HIV Agents; Bryostatins; Disease Eradication; HIV Infections; HIV-1; Humans; Virus Latency | 2017 |
Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor.
We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4(+) T cells. Topics: Acetanilides; Bryostatins; Caspases; CD4-Positive T-Lymphocytes; Cell Line, Tumor; HIV Infections; HIV-1; Humans; Jurkat Cells; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein; Neoplasm Proteins; Ribonucleases; Transcription Factors; Triazoles; Virus Activation; Virus Latency; Virus Replication | 2016 |
The Effect of Latency Reversal Agents on Primary CD8+ T Cells: Implications for Shock and Kill Strategies for Human Immunodeficiency Virus Eradication.
Shock and kill strategies involving the use of small molecules to induce viral transcription in resting CD4+ T cells (shock) followed by immune mediated clearance of the reactivated cells (kill), have been proposed as a method of eliminating latently infected CD4+ T cells. The combination of the histone deacetylase (HDAC) inhibitor romidepsin and protein kinase C (PKC) agonist bryostatin-1 is very effective at reversing latency in vitro. However, we found that primary HIV-1 specific CD8+ T cells were not able to eliminate autologous resting CD4+ T cells that had been reactivated with these drugs. We tested the hypothesis that the drugs affected primary CD8+ T cell function and found that both agents had inhibitory effects on the suppressive capacity of HIV-specific CD8+ T cells from patients who control viral replication without antiretroviral therapy (elite suppressors/controllers). The inhibitory effect was additive and multi-factorial in nature. These inhibitory effects were not seen with prostratin, another PKC agonist, either alone or in combination with JQ1, a bromodomain-containing protein 4 inhibitor. Our results suggest that because of their adverse effects on primary CD8+ T cells, some LRAs may cause immune-suppression and therefore should be used with caution in shock and kill strategies. Topics: Antiretroviral Therapy, Highly Active; Biomarkers; Bryostatins; CD4 Lymphocyte Count; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cytokines; Depsipeptides; Female; HIV Infections; HIV-1; HLA-A Antigens; HLA-B Antigens; Humans; Immunomodulation; Lymphocyte Activation; Male; Receptors, Antigen, T-Cell; Viral Load; Virus Activation; Virus Latency | 2016 |
Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations.
Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs. Topics: Adult; Anti-HIV Agents; Azepines; Bryostatins; CD4-Positive T-Lymphocytes; Cells, Cultured; Disulfiram; Drug Evaluation, Preclinical; Drug Synergism; Female; Histone Deacetylase Inhibitors; HIV Infections; HIV-1; Humans; Lymphocyte Activation; Lymphokines; Male; Middle Aged; Phorbol Esters; Protein Kinase C; RNA, Messenger; RNA, Viral; Transcription, Genetic; Triazoles; Virion; Virus Latency | 2015 |
Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.
The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells. Topics: Animals; Anti-HIV Agents; Apoptosis; Bryostatins; CD4-Positive T-Lymphocytes; Cell Line, Tumor; Cell Survival; Female; Gamma Rays; Genes, Reporter; Green Fluorescent Proteins; Histone Deacetylase 1; HIV Infections; HIV-1; Humans; Male; Methyltransferases; Mice; Monocytes; Repressor Proteins; RNA Polymerase II; RNA, Viral; Transcription, Genetic; Tumor Suppressor Protein p53; Virus Activation; Virus Replication | 2015 |
Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-ĸB-dependent mechanism.
Multiple studies have shown that HIV-1 patients may develop virus reservoirs that impede eradication; these reservoirs include the central nervous system (CNS). Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. To broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as a latent HIV-1 activator. We used primary astrocytes, NHA cells, and astrocytoma cells U-87. Infected cells with HIV-1(NL4.3) were treated with bryostatin alone or in combination with different inhibitors. HIV-1 production was quantified by using ELISA. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of the LTR promoter with the active NF-κB member p65/relA. To confirm the NF-κB role, Western blot and confocal microscopy were performed. Bryostatin reactivates latent viral infection in the NHA and U87 cells via activation of protein kinase C (PKC)-alpha and -delta, because the PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. No alteration in cell proliferation was found. Moreover, bryostatin strongly stimulated LTR transcription by activating the transcription factor NF-κB. Bryostatin could be a beneficial adjunct to the treatment of HIV-1 brain infection. Topics: Astrocytes; Bryostatins; Cell Line, Tumor; Gene Expression Regulation, Viral; HIV Infections; HIV Long Terminal Repeat; HIV-1; Humans; NF-kappa B; Promoter Regions, Genetic; Protein Kinase C; Signal Transduction; Transcriptional Activation; Virus Latency | 2015 |
New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo.
HIV-1 persists in a latent reservoir despite antiretroviral therapy (ART). This reservoir is the major barrier to HIV-1 eradication. Current approaches to purging the latent reservoir involve pharmacologic induction of HIV-1 transcription and subsequent killing of infected cells by cytolytic T lymphocytes (CTLs) or viral cytopathic effects. Agents that reverse latency without activating T cells have been identified using in vitro models of latency. However, their effects on latently infected cells from infected individuals remain largely unknown. Using a new ex vivo assay, we demonstrate that none of the latency-reversing agents (LRAs) tested induced outgrowth of HIV-1 from the latent reservoir of patients on ART. Using a quantitative reverse transcription PCR assay specific for all HIV-1 mRNAs, we demonstrate that LRAs that do not cause T cell activation do not induce substantial increases in intracellular HIV-1 mRNA in patient cells; only the protein kinase C agonist bryostatin-1 caused significant increases. These findings demonstrate that current in vitro models do not fully recapitulate mechanisms governing HIV-1 latency in vivo. Further, our data indicate that non-activating LRAs are unlikely to drive the elimination of the latent reservoir in vivo when administered individually. Topics: Anti-HIV Agents; Azepines; Bryostatins; CD4-Positive T-Lymphocytes; Cell Cycle Proteins; Depsipeptides; Disulfiram; Histone Deacetylase Inhibitors; HIV Infections; HIV-1; Humans; Hydroxamic Acids; Indoles; Ionomycin; Lymphocyte Activation; Nuclear Proteins; Panobinostat; Tetradecanoylphorbol Acetate; Transcription Factors; Triazoles; Virus Latency; Vorinostat | 2014 |
Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.
HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs. Topics: Adenylate Kinase; Bryostatins; Cells, Cultured; HIV Infections; HIV-1; Humans; Protein Kinase C; Protein Kinase Inhibitors; Signal Transduction; Virus Latency | 2010 |
Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency.
The persistence of latent HIV-infected cellular reservoirs represents the major hurdle to virus eradication on patients treated with HAART. It has been suggested that successful depletion of such latent reservoirs will require a combination of therapeutic agents that can specifically and efficiently act on cells harboring latent HIV-1 provirus. Using Jurkat-LAT-GFP cells, a tractable model of HIV-1 latency, we have found that bryostatin -1 reactivates HIV-1 through a classical PKC-dependent pathway. Bryostatin-1 also activates MAPKs and NF-κB pathways and synergizes with HDAC inhibitors to reactivate HIV-1 from latency. Bryostatin-1 downregulates the expression of the HIV-1 co-receptors CD4 and CXCR4 and prevented de novo HIV-1 infection in susceptible cells. We applied proteomic methods to investigate major changes in protein expression in Jurkat-LAT-GFP under latency and reactivation conditions. We identified up-regulation of proteins that may be involved in the innate anti-HIV-1 response (NKEF-A and MHD2) and in different cell functions (i.e. cofilin-1 and transgelin-2) of the host cells. PKC agonists may represent a valuable pharmacological approach to purge latent HIV from cellular reservoirs and at the moment, the only clinically available PKC agonist is bryostatin-1. This drug has been tested in numerous clinical trials and its pharmacokinetics and toxicity in humans is well known. Moreover, bryostatin-1 potently synergizes with other HDAC inhibitors commonly used in the medical practice such as valproic acid. Therefore, bryostatin-1, alone or in combination with HDAC inhibitors, could be used in HAART treated patients to validate the hypothesis that reactivating HIV-1 from latency could purge HIV-1 reservoirs. Topics: Anti-HIV Agents; Antiretroviral Therapy, Highly Active; Bryostatins; CD4 Antigens; Down-Regulation; Histone Deacetylase Inhibitors; HIV Infections; HIV-1; Humans; Jurkat Cells; Mitogen-Activated Protein Kinases; NF-kappa B; Protein Kinase C; Proviruses; Receptors, CXCR4; Up-Regulation; Virus Latency | 2010 |